

CALLIDE POWER STATION

BRISBANE | PERTH | SINGAPORE | PAPUA NEW GUINEA

ECOLOGICAL AND CONTAMINANTS REPORT

© Hydrobiology Pty Ltd 2023

Disclaimer: This document contains confidential information that is intended only for the use by Hydrobiology's Client. It is not for public circulation or publication or to be used by any third party without the express permission of either the Client or Hydrobiology Pty. Ltd. The concepts and information contained in this document are the property of Hydrobiology Pty Ltd. Use or copying of this document in whole or in part without the written permission of Hydrobiology Pty Ltd constitutes an infringement of copyright.

While the findings presented in this report are based on information that Hydrobiology considers reliable unless stated otherwise, the accuracy and completeness of source information cannot be guaranteed. Furthermore, the information compiled in this report addresses the specific needs of the client, so may not address the needs of third parties using this report for their own purposes. Thus, Hydrobiology and its employees accept no liability for any losses or damage for any action taken or not taken on the basis of any part of the contents of this report. Those acting on information provided in this report do so entirely at their own risk.

DOCUMENT CONTROL INFORMATION

DATE PRINTED		JOE	JOB NUMBER REPORT		NUMBER	
24/07/2023		B2	B22096		4	
PROJECT TITLE Callide Powe		Callide Power St	ation			
PROJECT SUBTITLE Ecological R		Ecological Repor	t			
PROJECT MANAGER Justin Cutaja		Justin Cutajar				
FILENAME B22096_R		B22096_R_Callid	e Power Station Ec	ological Report Prim	nary_V4-0	
STATUS	ORIGIN	A T O R / S	REVIEWED	AUTHORISED	DATE	
0-1	МК		ЈН			
0-2	MK, JH		JC			
1-0	MK, JH		JC	JC	05/05/2023	
2-0	MK, JH		JC	JC	22/05/2023	
3-0	MK, JH		JC	JC	22/06/2023	
4-0	MK, JH		JC	JC	24/07/2023	

DISTRIBUTION

FILENAME	DESCRIPTION	ISSUED TO	ISSUED BY
B22096_Callide Power Station Ecological Report Primary_V4-0	0	t LA	JC

EXECUTIVE SUMMARY

This report presented the finding of the aquatic ecological assessment of the Callide Creek catchment upstream and downstream of Callide Power Station (CPS). The survey involved the collection of aquatic fauna and analysis of biota tissue to inform human and ecological health risk assessments regarding per and poly fluorinated alkyl substance (PFAS) compounds and other chemicals (metals/metalloids and fluoride). The survey also aimed to determine the aquatic values of the assessed waterbodies. Aquatic values are defined as the intrinsic values of aquatic ecosystems, habitat and wildlife in waterways and riparian areas, for example, biodiversity, ecological interactions, plants, animals, key species (such as turtles, platypus, seagrass and dugongs) and their habitat, food and drinking water (DEHP, 2011).

key species (such as turtles, platypus, seagrass and dugongs) and their habitat, food and drinking water.

The survey was conducted in early February 2023, and assessed the biota tissue contaminants, habitat condition, macroinvertebrate community and aquatic biota (macrocrustaceans, fish and aquatic reptiles), of each site. Results were compared between sites and against relevant guidelines.

The habitat condition, aquatic biota, and macroinvertebrate communities varied between control/reference sites and test sites. Upstream of Callide Dam within Callide Creek habitat condition was excellent and aquatic biota and macroinvertebrates were abundant and diverse for this system. Downstream some disturbance was evident based on the state of the habitat, water quality, and macroinvertebrate assemblages. Habitat quality overall was in good to excellent condition, with most sites limited due to lower water depth, availability of micro and macrohabitats and by high fine sediment content. Lake Callide, a larger water body with sections of sheltered habitat was able to support similar, and in some cases more diverse aquatic biota and macroinvertebrates communities

than the comparable reference site Lake Kroombit. Available water quality data was scarce, however showed that site AB11 had high conductivity (2,631µS/cm) and that dissolved oxygen (%saturation) was relatively low across all sites, in particular downstream of Lake Callide.

PFOS was detected in biota samples at sites on Callide Creek both upstream and downstream of the CPS with most concentrations being above human and ecological health guidelines levels. No PFOS was detected in biota samples from Lake Callide or within Lake Kroombit. PFOS concentrations appear to increase with increasing distance downstream of CPS, with the highest concentrations recorded at the furthest downstream site. Concentration of metals and fluoride in biota samples did not show an obvious trend between control/reference and test sites. Where guidelines (generally expected levels) were available most metals/metalloids concentrations were below respective guidelines, except for zinc. However, zinc concentrations were above guideline levels regardless of species and site.

contents

1. INTRODUCTION	10
1.1 Background	10
1.2 Scope	10
1.3 Location and History	11
1.4 Catchments and Watecourses	11
1.5 Local Climate 1.6 Environmental Values	11 14
2. METHODS 2.1 Monitoring Aspects	16 16
2.2 Survey Locations	10
3. RESULTS AND DISCUSSION	19
3.1 Habitat	10
3.1.1 Habitat Condition	19
3.1.2 Banks Stability	20
3.1.3 Bed Stability	20
3.1.4 Riparian Vegetation	21
3.1.5 Macrohabitat	21
3.1.6 Microhabitat	22
3.1.7 Macrophytes	23
3.2 Water Quality	29
3.3 Macroinvertebrates	31
3.3.1 Diversity Indices	31
3.3.2 Community Assemblage	38
3.3.3 Functional Feeding Guides	41
3.3.4 AUSRIVAS Modelling	43
3.4 Fish, Macrocrustaceans, and reptiles	43
3.4.1 Fish	43
3.4.2 Macrocrustaceans	51
3.4.3 Reptiles	53
3.5 Biota Tissue Analysis	55
3.5.1 PFAS	55
3.5.2 Metals	61
3.5.3 Summary	87
4. CONCLUSION	89
5. REFERENCES	90
APPENDIX A. METHODS	

APPENDIX B. QA/QC

APPENDIX C. WATER QUALITY DATA APPENDIX D. TABULATED DATA APPENDIX E. LABORATORY REPORTS

tables

Table 1-1 Prescribed environmental values of Callide Creek and tributaries (developed)
Table 2-1 Site names, treatments and locations. Coordinates provided in Geodetic Datum of Australia (GDA) 2020
Table 3-1 Site descriptions and habitat assessment
Table 3-2 OE50 scores from the March 2023 data. Bands are indicated in brackets and by cell colour; dark green (X) = more biologically diverse than reference site; light green (A) = reference condition; yellow (B) = significantly impaired; orange (C) = severely impaired; red (D) = extremely impaired
Table 3-3 Comparison of Callide Creek main trunk fish WQOs to observed fish diversity indices of each assessed reach. Highlighted values indicate non-conformance with the defined biological WQO 44
Table 3-4 Fish captured in March 2023 survey
Table 3-5 Minimum, maximum and average lengths (mm) of taxa recorded at each site
Table 3-6 Macrocrustaceans captured in March 2023 survey
Table 3-7 Aquatic reptiles captured in March 2023 survey
Table 3-8 Human and ecological health species caught and selected foranalysis.56
Table 3-9 Biota tissue analysis results summary
Table 5-1 Primary samples and their respective duplicate/triplicatesamples
Table 5-2 Summary of human health screening criteria, extracted from NEMP (2020)
Table 5-3 Summary of ecological screening criteria, extracted fromNEMP (2020).101
Table 5-4 GELs used in the current study. Units in mg/kg
Table 5-5 Duplicate tissue analysis QA/QC results. Shaded cells represent RPD >50%
Table 5-6 Triplicate tissue analysis QA/QC results
Table 5-7 Rinsate and dilute Aqui-s QA/QC analysis results110
Table 5-8 In-situ water quality data provided by client

figures

Figure 1-1 Long term (LT) monthly mean rainfall, maximum and minimum temperature statistics from the Biloela climate station 039290 (BOM, 2023)12
Figure 1-2 CPS with infrastructure and other points of interest
Figure 2-1 Monitoring sites with watercourses, infrastructure and other points of interest
Figure 3-1 Habitat assessment scores of wetland (left) and non-wetland (right) sites with bands indicating the upper limit of each condition grade. Solid lines indicative of River Bioassesmment Program grades, dashed lines indicative of adapted scores for wetland sites
Figure 3-2 Particles size contribution to overall substrate
Figure 3-3 Riparian vegetation contribution (%)
Figure 3-4 Macrohabitat contribution
Figure 3-5 Microhabitat contribution22
Figure 3-6 Contribution of macrophytes to overall assemblage23
Figure 3-7 pH levels at study sites with dotted lines indicating WQO maximums and straight lines indicating WQO minimums
Figure 3-8 Dissolved oxygen (% saturation) levels at study sites with dotted lines indicating WQO maximums and straight lines indicating WQO minimums
Figure 3-9 Electrical conductivity (EC, µS/cm) levels at study sites with dotted lines indicating maximum EC defined under the Callide Creek catchment WQOs. WQO only applicable for water courses, therefore not applicable to sites AB2, AB3 and AB9
Figure 3-10 Macroinvertebrate abundance at edge habitats (top) and bed habitats (bottom)
Figure 3-11 Macroinvertebrate taxa richness at edge habitats (top) and bed habitats (bottom)
Figure 3-12 Macroinvertebrate PET taxa richness at edge habitats (top) and bed habitats (bottom)
Figure 3-13 Macroinvertebrate SIGNAL2 score at edge habitats (top) and bed habitats (bottom
Figure 3-14 Macroinvertebrate percentage contribution of tolerant taxa at edge habitats (top) and bed habitats (bottom)
Figure 3-15 Contribution to overall macroinvertebrate assemblage from dominant taxa (dominant 90%) within edge habitat

from dominant taxa (dominant 90%) within bed habitat
Figure 3-17 Functional Feeding Guides (FFGs) of macroinvertebrate taxa (high contributing species -90%) within edge (top) and bed (bottom) habitats. FFGS present in the study included filtering collectors (FC), gathering/filtering collectors (GC/FC), gathering collectors (GC), predators (P), predators/gat5hering collectors (P/GC), predators/gathering collectors/filtering collectors (P/GC/FC), predators/macrophyte piercers (P/MP), predators/scavengers (P/Sv), predators/ scrapers (P/S), predators/scrapers/gathering collectors (P/S/GC), predators/scrapers/parasites (P/S/PA), predators/shredders (P/Sh), scrapers (S), scrapers/gathering collectors (S/GC)
Figure 3-18 Abundance and taxa richness of fish caught at all sites 46
Figure 3-19 Abundance and taxa richness of macrocrustaceans caught at all sites - no macrocrustaceans were captured or observed at AB5, AB6 or AB8
Figure 3-20 Abundance and taxa richness of reptiles caught at all sites - no reptiles were captured or observed at AB14
Figure 3-21 PFOS measured from human health target species. Green line represents human health guideline value (NEPM, 2020)58
Figure 3-22 PFOS measured from ecological health target species. Lines represents avian (blue) and mammalian (red) diet ecological guideline values (NEMP, 2020)60
Figure 3-23 Arsenic concentration in biota tissue
Figure 3-23 Arsenic concentration in biota tissue
Figure 3-23 Arsenic concentration in biota tissue
Figure 3-23 Arsenic concentration in biota tissue
Figure 3-23 Arsenic concentration in biota tissue
Figure 3-23 Arsenic concentration in biota tissue.63Figure 3-24 Barium concentration in biota tissue.66Figure 3-25 Chromium concentration in biota tissue.69Figure 3-26 Copper concentration in biota tissue.67GELs (ANZFA, 2001).72Figure 3-27 Molybdenum concentration in biota tissue.74Figure 3-28 Selenium concentration in biota tissue.67
Figure 3-23 Arsenic concentration in biota tissue.63Figure 3-24 Barium concentration in biota tissue.66Figure 3-25 Chromium concentration in biota tissue.69Figure 3-26 Copper concentration in biota tissue.69Figure 3-26 Copper concentration in biota tissue.72Figure 3-27 Molybdenum concentration in biota tissue.74Figure 3-28 Selenium concentration in biota tissue.74Figure 3-28 Selenium concentration in biota tissue.77
Figure 3-23 Arsenic concentration in biota tissue.63Figure 3-24 Barium concentration in biota tissue.66Figure 3-25 Chromium concentration in biota tissue.69Figure 3-26 Copper concentration in biota tissue. Green lines represent72GELs (ANZFA, 2001).72Figure 3-27 Molybdenum concentration in biota tissue.74Figure 3-28 Selenium concentration in biota tissue. Green lines77Figure 3-29 Strontium concentration in biota tissue.80
Figure 3-23 Arsenic concentration in biota tissue.63Figure 3-24 Barium concentration in biota tissue.66Figure 3-25 Chromium concentration in biota tissue.69Figure 3-26 Copper concentration in biota tissue. Green lines represent GELs (ANZFA, 2001).72Figure 3-27 Molybdenum concentration in biota tissue.74Figure 3-28 Selenium concentration in biota tissue. Green lines represent GELs (ANZFA, 2001).77Figure 3-29 Strontium concentration in biota tissue.80Figure 3-30 Vanadium concentration in biota tissue.81

1. Introduction

1.1 BACKGROUND

In December 2021, CS Energy Limited (CS Energy) was issued with a notice to conduct or commission an Environmental Evaluation (EE) to investigate and assess the source, cause and extent of any actual or potential environmental harm resulting from the historical use of Aqueous Film Forming Foam (AFFF) at the Callide Power Station (hereafter referred to as CPS). A Sampling Analysis and Quality Plan (SAQP) was prepared by Epic Environmental on 28 February 2022 (Epic Environmental, 2022) to address Requirement 3 of the EE.

The SAQP outlined the need to conduct a desktop review to facilitate the design of an appropriate aquatic biota sampling that would adequately address the requirements of the EE pertaining to human and/or ecological health risks arising from human consumption of aquatic biota as well as bioaccumulation within the food chain.

Epic completed the desktop review in accordance with the SAQP and as an outcome of this review designed a biota sampling strategy which was then implemented by Hydrobiology in 2023.

1.2 SCOPE

Hydrobiology was contracted to conduct the fieldwork and reporting as stipulated by the SAQP, including:

- Habitat assessments;
- Macroinvertebrate sampling; and

- Collection of aquatic biota to inform the human and ecological health risk assessments. The original scope of works included the assessment of PFAS; however Hydrobiology were requested to subsequently include the assessment of the following parameters, including:
 - Metals and metalloids.
 - arsenic, barium, boron, chromium, copper, lithium, molybdenum, selenium, strontium, thorium, uranium, vanadium, zinc.
 - Fluoride.

1.3 LOCATION AND HISTORY

CPS is located within the Callide Basin in the Banana Shire region of Queensland, approximately 10 km east of the Biloela township and approximately 110 km south of Rockhampton. CPS comprises three coal-fired power plants supplied by the nearby Callide mine (Figure 1-2). The first, Callide A, was opened in 1965 but was decommissioned in 2001, except for a single unit which was used to demonstrate carbon capture technology and was decommissioned in 2016. The other two power stations, Callide B and Callide C, remain active. Callide B was commissioned in 1988 and is owned by CS Energy, whereas Callide C was commissioned in 2001 and is owned in a 50/50 venture between CS Energy and IG Power (formerly known as InterGen).

1.4 CATCHMENTS AND WATECOURSES

The study area is located within the Callide Creek catchment within the Dawson River sub-basin. With the exception of one site, all sites are located within Callide Creek, upstream, downstream and within Callide Dam. The remaining site is located within Kroombit Dam on Kroombit Creek.

A map of the project location and site positions are provided in Section 2.2.

1.5 LOCAL CLIMATE

The climate for the area is typical of the region, with high daytime summer temperatures and mild winters (Figure 1-1). Rainfall is variable, with most rain falling during the warmer months from mid-October to mid-March. Above average rainfall occurred in the months preceding monitoring in February 2023. In the weeks leading up to the survey, a total of 31 mm was recorded, while a total of 19 mm of rain was recorded within the survey period (30th January to 3rd February 2023).

Figure 1-1 Long term (LT) monthly mean rainfall, maximum and minimum temperature statistics from the Biloela climate station 039290 (BOM, 2023).

Figure 1-2 CPS with infrastructure and other points of interest

1.6 ENVIRONMENTAL VALUES

EVs are the qualities of waterways that need to be protected from the effects of pollution, waste discharges and other threats (such as runoff from agricultural lands) to ensure aquatic ecosystems are healthy and the waterways continue to provide essential ecosystem services. There are a range of EVs applicable to waterways in Queensland. These include the value of the waterways to aquatic ecosystems, primary industries, recreation and aesthetics, drinking water, industrial uses as well as cultural and spiritual values. DEHP (2011) defines EVs for the Callide Creek Catchment within the Dawson River Sub-Basin in which CPS is located. DEHP (2011) sets out a framework for EVs which are defined for tributaries and regulated and unregulated waters of Callide Creek Catchment. Those most relevant to the survey sites are the Callide Creek tributaries (developed) and Upper Kroombit Creek and tributaries (Table 1-1).

Label	Environmental Value	Description	Callide Creek and tributaries— developed areas	Upper Kroombit Creek and tributaries
*	Aquatic ecosystem	The intrinsic value of aquatic ecosystems, habitat and wildlife in waterways, waterholes and riparian areas, for example, biodiversity, ecological interactions, plants, animals, key species and their habitat, food and drinking water. EV were designed for the protection of moderately disturbed systems (i.e. 95% biota protection trigger).	✓	✓
- -	Irrigation	Suitability of water supply for irrigation, for example, irrigation of crops, pastures, parks, gardens and recreational areas.	~	~
fi.	Farm supply	Suitability of domestic farm water supply, other than drinking water. For example, water used for laundry and produce preparation.	~	~
₹ ~1	Stock watering	Suitability of water supply for production of healthy livestock.	~	~
5	Aquaculture	Health of aquaculture species and humans consuming aquatic foods (such as fish and prawns) from commercial ventures.		~
	Human consumption	Health of humans consuming aquatic foods, such as fish and prawns, from natural waterways.	~	~

Table 1-1 Prescribed environmental values of Callide Creek and tributaries (developed).

Label	Environmental Value	Description	Callide Creek and tributaries— developed areas	Upper Kroombit Creek and tributaries
Æ	Primary recreation	Health of humans during recreation which involves direct contact and a high probability of water being swallowed, for example, swimming, diving and water-skiing.	✓	✓
₽	Secondary recreation	Health of humans during recreation which involves indirect contact and a low probability of water being swallowed, for example, wading, boating, rowing and fishing.	✓	✓
0	Visual appreciation	Amenity of waterways for recreation which does not involve contact with water. For example, walking and picnicking adjacent to a waterway.	~	~
ð	Drinking water	Suitability of raw drinking water supply. This assumes minimal treatment of water is required, for example, coarse screening and/or disinfection.	✓	✓
**	Industrial	Suitability of water supply for industrial use, for example, food, beverage, paper, petroleum and power industries, mining and minerals refining/processing. Industries usually treat water supplies to meet their needs.	~	
f y	Cultural and spiritual values	Cultural, spiritual and ceremonial values of water means its aesthetic, historical, scientific, social or other significance, to the past, present or future generations.	~	~

2. Methods

2.1 MONITORING ASPECTS

Sampling was conducted at nine sites following the methods specified in the Sampling Analysis and Quality Plan (SAQP) (Epic Environmental, 2022) and under the following codes of practice and State or Commonwealth guidelines:

- DES (2018) Deciding aquatic ecosystems indicators and local water quality guidelines;
- DES (2018) Monitoring and Sampling Manual;
- DES (2014) Receiving Environment Monitoring Program guideline For use with Environmental Relevant Activities under the Environmental Protection Act (1994);
- Department of Natural Resources and Mines (DNRM) (2001). *Queensland, Australian River Assessment System (AUSRIVAS) Sampling and Processing Manual;*
- DEHP (2011) Environmental Protection (Water) Policy (2009) Callide Creek Catchment Environmental Values and Water Quality Objectives Relevant state and national standards; and
- (Queensland Health, n.d.) Guideline for sampling and analysis of seafood suitable for human health risk assessments of PFAS contamination.

Details regarding sample collection methods, analysis and QA/QC approaches for each monitoring aspect are discussed in Appendix B. Relevant guideline values and explanations of macroinvertebrate analysis (including definitions of indices and AUSRIVAS scores) are also discussed in Appendix A. The results of implemented QA/QC are discussed in Appendix B.

2.2 SURVEY LOCATIONS

As part of the scope of works (Epic Environmental, 2022), nine sites within and adjacent to the CPS were surveyed during the 30th January to 3rd February 2023 period (see Table 2-1 and Figure 2-1).

Sites were positioned spatially over a longitudinal grade and separated by treatments (test, control, and reference sites). Test sites were positioned downstream of CP, therefore potentially impacted. Control sites were positioned upstream from CP within the Callide Creek, away from potential impacts. Reference sites were positioned in the same basin as control and test sites but in a separate catchment, therefore providing context of PFAS levels withing the wider region.

				Coordinates	
Site	Waterway/region	Treatment	Habitat	Latitude	Longitude
AB9	Lake Kroombit	Reference	Lacustrine	-24.4156	150.773
AB1	Upstream Callide Creek	Control	Riverine	-24.3271	150.6762
AB2	Lake Callide	Test	Lacustrine	-24.3580	150.6258
AB3	Lake Callide	Test	Lacustrine	-24.3687	150.6161
AB4	Downstream Callide Creek	Test	Riverine	-24.3641	150.6072
AB5	Downstream Callide Creek	Test	Riverine	-24.3793	150.5604
AB6	Downstream Callide Creek	Test	Riverine	-24.3702	150.5307
AB7	Downstream Callide Creek	Test	Riverine	-24.3593	150.4987
AB8	Downstream Callide Creek	Test	Riverine	-24.3462	150.4761

Table 2-1 Site names, treatments and locations. Coordinates provided in Geodetic Datum of Australia (GDA) 2020.

Figure 2-1 Monitoring sites with watercourses, infrastructure and other points of interest

3. RESULTS AND DISCUSSION

Field datasheets are displayed in Appendix C.

3.1 HABITAT

Site photos and descriptions can be found in Table 3-1. Results are presented spatially over a longitudinal gradient.

3.1.1 HABITAT CONDITION

The study area contained a mix of lacustrine and riverine habitats, which required a mix of traditional and adjusted habitat assessments. Most sites were riverine sites and could be assessed using the traditional habitat assessment defined by AUSRIVAS, however AB2, AB3 and AB9 were assessed under a different metric. Regardless of how the scores were classified, all sites were graded as being in poor, fair, good or excellent condition, however the required scores for each band varied between sites (see Appendix A for more details).

Habitat condition of all riverine sites ranged from good to excellent (Figure 3-1). The habitat condition of the control site AB1 was scored "excellent" whereas all sites downstream of Lake Callide were scored as "good". In comparison to AB1 sites downstream were largely limited by decreased bottom

substrate variability (greater proportion of fines content), high embeddedness (i.e., minimal interstitial spacing), the limited depth and variability of macrohabitat (i.e. restricted to pools while riffles and runs were absent) and the coverage of streamside vegetation due to clearing.

Wetland sites AB9 and AB2 were in good condition, however site AB3 was classified as fair. All sites were hindered by lack of substrate variability, macrohabitat availability and the dominance of grasses as the primary riparian vegetation.

Figure 3-1 Habitat assessment scores of wetland (left) and non-wetland (right) sites with bands indicating the upper limit of each condition grade. Solid lines indicative of River Bioassesmment Program grades, dashed lines indicative of adapted scores for wetland sites.

3.1.2 BANKS STABILITY

The bank stability of all sites were classified as good to excellent. Most banks were stable or moderately stable, with little evidence of erosion. Some sites however had reduced streambank cover. The streambank surfaces of all sites were at least 50% covered in vegetation, gravel or larger material.

3.1.3 BED STABILITY

Overall, bed stability of all sites ranged from good to excellent, with little evidence of scouring and some deposition of fine sediment. Most test sites had low to loose compaction of the bed material, with little to no grading, packing, structure or overlapping of substrate particles meaning it could be easily dislodged, except for test site AB8 which had moderate bed compaction. Control site AB1 was the only site to record tight compaction of the bed material.

For most sites, bed stability could be linked to the substrate composition which was overall dominated by silt/clay sediments (Figure 3-2). In contrast, AB1 which contained tight compaction of the bed material contained larger particles of sand, pebbles and cobble, exposed bedrock as well as silt/clay sediment. While silt/clay was less prevalent at site AB8, larger sediments were more abundant, making it more similar to upstream conditions at AB1.

Bedrock Boulder (>256mm) Cobble (64-256mm) Pebble (4-64mm) Gravel (2-4mm) Sand (0.05-2mm) Silt/Clay (<0.05mm)

3.1.4 RIPARIAN VEGETATION

The riparian vegetation associated with lake habitats was largely cleared, with trees often scarce and the banks dominated by grasses and/or bare ground (Figure 3-3). Exotics grass and pasture species were present at most sites to some degree. At Callide Creek sites, clearing was reduced and the riparian vegetation still contained patches of trees interspersed by grasses and shrubs.

3.1.5 MACROHABITAT

Macrohabitat lacked diversity across each site, with most sites comprised of only one macrohabitat (Figure 3-4). Downstream sites AB7 and AB8 were most like the control site as rocky pool habitat was present. All other sites were comprised of sandy/silt pools.

Figure 3-4 Macrohabitat contribution.

3.1.6 MICROHABITAT

Microhabitat was predominantly provided by small woody debris (SWD) and detritus. Periphyton and large woody debris (LWD) were each present in smaller quantities but also commonly present (Figure 3-5). Undercut banks were present at three sites (AB1, AB6 and AB8). Some microhabitat was also provided by the macrophytes, and algae present to varying degrees.

Figure 3-5 Microhabitat contribution

3.1.7 MACROPHYTES

Macrophytes were present at all sites, and they were largely found along edge habitats; however some macrophytes were also present within the pool habitat (Figure 3-6). Several downstream creek sites were dominated by either *Hydrilla* sp. or *Typha* sp. but typically also had other species present. The reference site at Lake Kroombit was dominated by *Persicaria sp.* whereas within Lake Callide taxa such as charophytic algae were more common. The most diversity and species evenness was observed at the upstream Callide Creek control site AB1 where most taxa found at across the rest of the study area were present. Taxa absent from this site were *Persicaria* sp., *Nymphoides* sp., and *Ceratophyllum* sp.

Figure 3-6 Contribution of macrophytes to overall assemblage

Table 3-1 Site descriptions and habitat assessment

Site	Feature	Upstream	Downstream
AB9	Watercourse: Lake Kroombit Dam		
	Local landuse: Reservoir, native vegetation		Statistics of the second second
	Bed erosion and sedimentation : Less than 5% of the bottom impact by sedimentation or scouring, no sediment deposition evident.		State of Concerns
	Banks: Circular pond. Banks convex shaped with slight (10-30°) side slope. Banks are stable, with no evidence of erosion or bank failure. Little potential for future problem. At least 80% of banks covered by vegetation or large particles.		
	Bed substrate: Dominated by silt/clay (60%) with smaller, equal coverage of cobble and boulder (20. Low compaction of bed material, poor grading, some packing and structure but little overlap and can be dislodged easily. Habitat provided by boulders/cobbles at edge.		
	Macrohabitat: Entirely sandy/silty pool.		
	Microhabitat : Detritus (5%), and SWD (10%) present. Macrophytes prevalent (60%) and algae present (15%), both limited to the bank edges.	a side a Share	
	Riparian vegetation: Isolated shrubs (30%) among grasses (30%) and exotics (40%), no trees.	ALL AND ALL AN	
	Habitat bioassessment score: 51, good condition		
AB1	Watercourse: Upstream Callide Creek		
	Local landuse: Native vegetation and roads		S. Carl Born
	Bed erosion and sedimentation : Less than 5% of the bottom impact by sedimentation or scouring, no sediment deposition evident.		
	Banks: Convex shaped banks with steep (60-90°) left side slope and flat to low (0-30%) right side slope. Banks are stable, with no evidence of erosion or bank failure. Little potential for future problem. At least 80% of banks covered by vegetation or large particles.		
	Bed substrate: Mixture of mostly cobble and pebble (30%) with some small, equal presence of bedrock, boulder and gravel (10%). Slight, equal presence of sand and silt/clay (5%). Tightly packed, armoured – array of sizes, tightly packed, overlapping and hard to dislodge.		1
	Macrohabitat: Entirely rocky pool.		and the shares
	Microhabitat : Some undercut banks (20%), with small, equal coverage from LWD, SWD, detritus and periphyton (10%) Macrophytes (40% total - 50% edge, 50% pool) and filamentous algae (20% total – 50% edge, 50% pool) also present.		
	Riparian vegetation: Contiguous riparian vegetation. Dominant vegetation of tree form (40%), with understory of shrubs (20%) and grasses (20%). Some presence of exotics (10%).		and the second second
	Habitat bioassessment score: 108, excellent condition		

Site	Feature	Upstream	Downstream
AB2	 Watercourse: Lake Callide Local landuse: Reservoir, native vegetation (cleared), road, residential and farm infrastructure Bed erosion and sedimentation: Less than 5% of the bottom impact by sedimentation or scouring, no sediment deposition evident. Banks: Convex shaped banks slight (10-30°) side slopes. Banks are stable, with no evidence of erosion or bank failure. Little potential for future problem. At least 80% of banks covered by vegetation or large particles. Bed substrate: Dominated by silt/clay (90%) with some areas of cobble (10%) and boulder (5%). Loose compaction of bed, loose array of particles with no packing or structure or overlap and is easily moved. Macrohabitat: Entirely sandy/silt pool. Microhabitat: Limited. Small, equal presence of small woody debris and detritus (10%) and slight presence of large woody debris (5%). Macrophytes (35%) present at edge and algae (50%) mostly present at edge (90%) with some present within the pool (10%). Riparian vegetation: Occasional shrubs (10%) among native (50%) and exotic grasses and pastures (30%). Habitat bioassessment score: 49, fair condition 	<image/>	
AB3	 Watercourse: Lake Callide Local landuse: Native vegetation (cleared), reservoir, residential and farming infrastructure. Bed erosion and sedimentation: Less than 5% of the bottom impact by sedimentation or scouring, no sediment deposition evident. Banks: Convex shaped banks with low (10-30°) side slopes. Banks are stable, with no evidence of erosion or bank failure. Little potential for future problem. At least 90% of banks covered by vegetation or large particles. Bed substrate: Dominated by silt/clay (60%), with some cobble (20%), some boulder (10%) and small, equal presence of gravel and sand particles (5%). Loose compaction of bed, loose array of particles with no packing or structure or overlap and is easily moved. Macrohabitat: Entirely sandy/silt pool. Microhabitat: Limited. Small presence of small woody debris (10%) and slight presence of detritus (5%). Macrophytes (20%) present at edge and algae (30%) mostly present at edge (90%) with some present within the pool (10%). Riparian vegetation: Mostly cleared habitat with occasional shrubs (10%) among native (50%) and exotic grasses and pastures (30%). Habitat bioassessment score: 52, good condition 	<image/>	

Site	Feature	Upstream	Downstream
AB4	 Watercourse: Callide Creek, below dam spillway. Local landuse: Native vegetation, wetland and road/access tracks. Bed erosion and sedimentation: Less than 5% of the bottom impact by sedimentation or scouring, no sediment deposition evident. Banks: Convex shaped, flat (0-10°) banks. Banks are stable, with no evidence of erosion or bank failure. Little potential for future problem. At least 80% of banks covered by vegetation or large particles. Bed substrate: Dominated by silt/clay (65%). Some cobble (20%), small presence of pebble (10%) and slight presence of boulder (5%0. Loose compaction of bed material – loose array of poorly packed or structured particles with little overlap and can be moved easily. Macrohabitat: Entirely sandy/silt pool Microhabitat: Some blanketing silt, some small, equal presence of SWD and (10%) and some slight, equal presence of LWD and periphyton (5%). Copious, equal amounts of filamentous algae and macrophytes (90%) within the pool (50%) and edge (50%). Riparian vegetation: Dominated by shrubs (90%) with isolated patches of native grasses (10%), essentially a wetland. Habitat bioassessment score: 73, good condition 	<image/>	
AB5	 Watercourse: Downstream Callide Creek. Local landuse: Native vegetation, wetland and farm/residential infrastructure. Bed erosion and sedimentation: Less than 5% of the bottom impact by sedimentation or scouring, no sediment deposition evident. Banks: Convex shaped, flat (0-10°) banks. Banks are stable, with no evidence of erosion or bank failure. Little potential for future problem. At least 80% of banks covered by vegetation or large particles. Bed substrate: Dominated by silt/clay (60%), some cobble (40%). Loose compaction of bed material – loose array of poorly packed or structured particles with little overlap and can be moved easily. Macrohabitat: Entirely sandy/silt pool Microhabitat: Abundant detritus (30%) and SWD (25%) with equal, small presence of LWD and periphyton (5%). Blanketing silt present. Copious, equal amounts of filamentous algae and macrophytes (90%) within the pool (50%) and edge (50%). Riparian vegetation: Isolated/scattered trees (20%) amongst native grasses (30%) and exotic pasture grasses (10%) and shrubs (40%). Habitat bioassessment score: 67, good condition 	<image/>	

Site	Feature	Upstream	Downstream
AB6	 Watercourse: Downstream Callide Creek Local landuse: Native vegetation (cleared), irrigated cropping, wetland and road, and farm/residential infrastructure. Bed erosion and sedimentation: Less than 5% of the bottom impact by sedimentation or scouring, no sediment deposition evident. Banks: Convex shaped banks with low (10-30°) side slopes. Banks are stable, with no evidence of erosion or bank failure. Little potential for future problem. At least 90% of banks covered by vegetation or large particles. Bed substrate: Dominated by silt/clay (85%) with some gravel (10%) and slight presence of pebble (5%). Loose compaction of bed material – loose array of poorly packed or structured particles with little overlap and can be moved easily. Lack of habitat provide by substrate obvious. Macrohabitat: Entirely sandy/silt pool Microhabitat: Some undercut banks (10%) and detritus (15%) with equal, small presence of SWD, LWD and periphyton (5%). Abundant macrophytes (75%) mostly within pool (70%) and some edge (30%). Some algae (20%) within the pool (100%). Riparian vegetation: Cleared patches of trees (40%) amongst exotic pasture grasses (30%), and small, equal patches of native grasses and shrubs (15%). Habitat bioassessment score: 82, good condition 	<image/>	
AB7	 Watercourse: Downstream Callide Creek. Local landuse: Wetland and native vegetation partially cleared for road infrastructure. Irrigated cropping upstream and piggery downstream. Bed erosion and sedimentation: Less than 5% of the bottom impact by sedimentation or scouring, no sediment deposition evident. Banks: Convex shaped, flat (0-10°) banks. Banks are stable, with no evidence of erosion or bank failure. Little potential for future problem. At least 80% of banks covered by vegetation or large particles. Bed substrate: Entirely silt/clay. Loose compaction of bed material – loose array of poorly packed or structured particles with little overlap and can be moved easily. Lack of habitat provide by substrate obvious. Macrohabitat: Mostly sandy/silt pool (80%) with some rocky pool (20%). Microhabitat: Some detritus (20%) with equal, small presence of sWD and periphyton (5%). Blanketing silt present. Small presence of macrophytes (10%) predominantly at edge (90%) and some within pool (10%). Algae present (10%) at edge (100%). Riparian vegetation: Cleared patches of trees (40%) amongst exotic pasture grasses (30%), and small, equal patches of native grasses shrubs and areas of bare earth (10%). Habitat bioassessment score: 79, good condition 	<image/>	

Site	Feature	Upstream	Downstream
AB8	Watercourse: Downstream Callide Creek/ Callide Weir		
	Local landuse: Native vegetation and wetland area with grazing and farm infrastructure.	DATE AT A LOW ON THE T	
	Bed erosion and sedimentation : 5-30% of the bed affected by deposition of silt within the pool.		
	Banks: Convex shaped, steep (60-80°, left) left bank and convex low (10-30°) right bank. Banks moderately stable. Infrequent, small areas of erosion (5%, right bank), 95% of the streambank surface covered by vegetation.		
	Bed substrate: Dominated by pebble (60%) with some cobble (20%) and small, equal presence of gravel (10%) and silt/clay (10%). Moderate compaction of bed material – array of sizes, some packing with little overlap and can be dislodged.		
	Macrohabitat: Entirely rocky pool		
	Microhabitat : Presence of undercut banks (15%) and some presence of detritus (10%) with equally presence of SWD and LWD (5%). Copious amounts of filamentous algae (80%) within the pool (50%) and edge (50%). Dense and diverse assemblage of macrophytes both within the pool (50%) and edge (50%).		
	Riparian vegetation: Cleared patches of trees (70% left, 30% right) amongst exotic pasture grasses (25%) and native grasses (5% left, 40% right) and shrubs (7.5%).		

Habitat bioassessment score: 97, good condition

3.2 WATER QUALITY

In-situ physiochemical data was provided by CS Energy and is tabulated in Appendix C. Samples were collected below the surface (approximately 0.5 m depth). No water quality data was provided for site AB6. Data was compared between sites and against relevant sub-regional guideline values (DEHP, 2011) for relevant habitat types (i.e., watercourse or lake). Note that this data was provided for background/general consideration and not part of Hydrobiology's scope.

Due to absence of an existing WQO for electrical conductivity (EC) in freshwater lakes and reservoirs, EC levels were compared to the Fitzroy Basin conductivity guideline value published by Prasad et al (2012) of 2000 μ S/cm. This represents a toxicity trigger for the protection of 95% of species, consistent with the moderately disturbed management classification detailed in DEHP (2011).

The following observations were made:

- The dissolved oxygen (DO) (% saturation) of all sites fell below the relevant WQO except at AB5 where no oxygen saturation data was available (Figure 3-8). The low oxygen saturation can largely be attributed to an absence of flow at all sites and abundant algal growth at the downstream Callide Creek sites;
- The EC of site AB4 was 2,631 µS/cm, exceeding the relevant WQO (Figure 3-9). It is worth noting that WQO are not indicative of toxicity, however the EC of site AB4 also exceeded the the Fitzroy Basin conductivity guideline value published by Prasad et al (2012) of 2,000 µS/cm which represents a toxicity trigger for the protection of 95% of species. All other sites remained below the Callide Creek WQO and Fitzroy Basin conductivity guideline values; and
- pH levels at all downstream Callide Creek test sites with available data were within the range of WQO values (Figure 3-7). The pH levels within the test and reference lake sites were higher than the WQO but similar to each other. The pH levels upstream of the dam at control site AB1 were also higher than the WQO and similar to levels within the Dam.

It is worth noting that data provided was collected up to seven months prior to the Hydrobiology field survey, therefore the water quality results displayed below may have differed from actual conditions during sampling.

----- Freshwater lakes and Callide Creek min WQO ---- Freshwater lakes max WQO ---- Callide Creek max WQO Figure 3-7 pH levels at study sites with dotted lines indicating WQO maximums and straight lines indicating WQO minimums.

Figure 3-8 Dissolved oxygen (% saturation) levels at study sites with dotted lines indicating WQO maximums and straight lines indicating WQO minimums.

Figure 3-9 Electrical conductivity (EC, μS/cm) levels at study sites with dotted lines indicating maximum EC defined under the Callide Creek catchment WQOs. WQO only applicable for water courses, therefore not applicable to sites AB2, AB3 and AB9.

3.3 MACROINVERTEBRATES

Analysis and interpretation of diversity indices, community assemblages, AUSRIVAS modelling and functional feeding guides of all sites which contained sampleable habitat (i.e. present water) are explored below.

3.3.1 DIVERSITY INDICES

Biological quality objectives (BQOs) are defined by DEHP (2011) for Callide Creek catchment watercourses, with no BQOs defined for lacustrine habitats such as those at site AB2, AB3 and AB9. While no BQOs have been set for lacustrine habitats, sites AB2, AB3 and AB9 were included for comparison purposes.

BED

Macroinvertebrate communities were similar between habitat types (watercourse compared to lacustrine sites) and reference and non-reference sites however varied slightly between test and control sites. Overall, most sites failed to meet the defined BQO's. The following observations were made:

- No BQO has been defined for macroinvertebrate abundances. However, abundances were notably higher at reference site AB9 than any other site and there was no discernible difference between test and control sites (Figure 3-10);
- All sites fell below the BQO for taxa richness (Figure 3-11);
- Plecoptera, Ephemoptera and Trichoptera (PET) Richness BQOs were met only by control site AB1 and Lake Callide test sites AB2 and AB3. With the exception of reference site AB9, no other site recorded any PET taxa (Figure 3-12);

- Test sites AB2 and AB8 were the only sites to fall within the BQO SIGNAL2 range. Control site AB1 and test site AB4 both recorded SIGNAL2 scores that exceeded the BQO, meaning they contained higher than expected sensitive taxa. All other sites fell below the defined BQO for SIGNAL2 scores (Figure 3-13); and;
- Test sites AB2, AB3 and AB4 were the only sites to not exceed the maximum value of the BQO for % tolerant taxa BQO (Figure 3-14).

With bed habitats, test sites typically contained more tolerant taxa and few sensitive taxa in comparison to the control site. This difference is attributed to the increased substrate and habitat complexity available at AB1 in comparison to test sites downstream of Callide Dam where siltation has reduced interstitial space.

EDGE

The macroinvertebrate biodiversity indices results of control site AB1 and the Lacustrine sites AB9 (reference), AB2 (test) and AB3 (test) were similar to one another and consistently better than those recorded by test sites downstream of Callide Dam. In regard to the BQO's, the following observations were made:

- No BQO has been defined for macroinvertebrate abundances. However, abundances were notably higher at reference site AB9 than any other site and there was no discernible difference between test and control sites (Figure 3-10);
- All sites except test site AB6 fell below the BQO for taxa richness (Figure 3-11);
- PET Richness BQOs were met only by the reference site AB9 and test site AB2. All other sites fell below the BQO. PET richness, like SIGNAL2 score, is a measure of sensitive taxa present within the system, therefore it is unsurprising that the results are similar between BQOs (Figure 3-12);
- Reference site AB9 and test site AB2 were the only sites to meet the BQO for SIGNAL2 score. All other sites fell below the BQO, however sites downstream of Callide dam were consistently below other sites (Figure 3-13); and
- Control site AB1 and test sites AB2 and AB3 were the only sites to meet or fall below the % tolerant taxa BQO. All other sites exceeded the BQO for % tolerant taxa (Figure 3-14).

SUMMARY

Overall, the results would suggest that the macroinvertebrate community of downstream of lake Callide (test sites AB4 to AB8), were typically dominated by tolerant taxa when compared to the upstream control site AB1 and Lacustrine sites AB9 (reference), AB2 (test) and AB3 (test). This improved community of the control and lacustrine sites is expected to be a result of water permanence at these sites, the increased macro and microhabitat availability and reduced frequency of disturbances in comparison to the somewhat ephemeral nature of downstream Callide Creek. It is worth noting that riffles and runs were understandably absent at lacustrine sites, theoretically reducing available habitat. However, these sites contained Ephemeroptera species, which are known to inhabit lakes and reservoirs in sheltered areas such as those that were sampled.

Figure 3-10 Macroinvertebrate abundance at edge habitats (top) and bed habitats (bottom)

Figure 3-11 Macroinvertebrate taxa richness at edge habitats (top) and bed habitats (bottom).

Figure 3-12 Macroinvertebrate PET taxa richness at edge habitats (top) and bed habitats (bottom).

Figure 3-13 Macroinvertebrate SIGNAL2 score at edge habitats (top) and bed habitats (bottom

Figure 3-14 Macroinvertebrate percentage contribution of tolerant taxa at edge habitats (top) and bed habitats (bottom).

3.3.2 COMMUNITY ASSEMBLAGE

Within edge habitats, the taxa present at the greatest number of sites were Copepoda, Ostracoda, Acarina and Atyidae; however their abundances varied between test and control sites. Overall, there were no taxa that were dominant across all sites. The macroinvertebrate assemblages found within edge habitats at downstream Callide Creek sites had greater taxa evenness than the upstream Callide Creek site and the wetland sites which were dominated by one or two taxa. Cladocera were present in high numbers within the Lake Kroombit reference site but did not contribute considerably to the Lake Callide assemblages. Instead within Lake Callide site AB3, Ostracods, a different taxon of microcrustacean dominated. Another notable difference was the contribution of the family Caenidae to the Lake Callide sites AB2 (22%) and AB3 (15%) compared to their absence within Lake Kroombit. Upstream Callide Creek the family Acarina dominated the control site and was present in test site assemblages to a lesser degree. Acarina within the edge habitat of AB1 were present in high abundances due to the availability of shelter in the form of interstitial spaces as a result of reduced embeddedness, debris and macrophytes. Downstream instead contained greater abundances and a higher taxa diversity of beetles (Coleoptera) and bugs (Hemiptera). For example, as well as the families present at the control site AB1 the Coleoptera families Hydraenidae, Hydrophilidae, Hydrochidae and Hemiptera families Pleidae, Hebridae, Belostomatidae were considerable contributors to multiple test sites.

In comparison to communities found within the edge habitats, the macroinvertebrate communities within bed habitats were limited at all sites. The most widespread taxa (i.e. present at highest number of sites) within bed habitats were Copepoda and Ostracoda and these two taxa dominated most sites. Sites AB9 and AB4 showed lower diversity than other sites and were dominated by microcrustaceans (i.e. Cladocera, Copepoda and Ostracoda). Cladocera and Ostracoda species are most commonly found in sites similar to AB9 and AB4 where there is still to slow flowing waters with macrophytes and algae present. Sites AB1, AB2 and AB8 had higher taxa diversity and had greater abundances of Copepoda. Also indicative of deeper water, copepods were present in more sheltered aquatic habitats. Sites AB9 and AB3 which also had deeper pools were more exposed than sites where copepods dominated. Sites AB5, AB6, AB7 had moderate diversity and taxa evenness as copepod dominance was absent (AB5 and AB7) or reduced.

Figure 3-15 Contribution to overall macroinvertebrate assemblage from dominant taxa (dominant 90%) within edge habitat

Callide Power Station •39

AB8

Figure 3-16 Contribution to overall macroinvertebrate assemblage from dominant taxa (dominant 90%) within bed habitat

Callide Power Station •40

3.3.3 FUNCTIONAL FEEDING GUIDES

Macroinvertebrate communities are often divided into functional feeding groups (FFGs) for analysis as a diverse range of taxa can be represented by a small number of FFGs which are typically indicative of food availability within a system and, more broadly, the inputs and disturbances of the system as a whole. Common divisions include filtering collectors, gathering collectors, predators, scrapers and shredders.

BED

Filtering and gathering collectors represented the majority of the macroinvertebrates present within the bed habitats of most sites. Collectors (filtering and gathering) contributed 44-90% of the total macroinvertebrate assemblage of sites, dominating at reference site AB9 and test site AB4. All other sites contained a more diverse assemblage of FFGs, with predators, scavengers, scrapers and macrophyte piercers representing small contributions to the remaining sites. There were no clear distinctions between test and control sites.

Collectors are often dominant in environments where fine particulate organic matter (FPOM) is far more abundant than coarse particulate matter, due to increased input from upstream due to biological (shredder) and mechanical processes, and autochthonous primary production. Within the surveyed sites, the macroinvertebrate assemblage within Lake Callide contained more FFG than Lake Kroombit, likely due to higher woody debris and detritus in the microhabitat of Lake Callide in comparison to periphyton.

EDGE

In comparison to bed habitats, the FFGs present within the edge habitat were more diverse and there were some notable variations in FFGs between sites, however no clear distinction between treatments.

Within edge habitats, sites were largely dominated by predators, however collectors were also present as were scrapers, shredders and parasites. Predators and parasites represented at least 50% of the macroinvertebrate assemblage present within the edge habitats of all sites except AB8, with the remaining macroinvertebrates typically collectors. The edge community at site AB8 had higher levels of filtering collectors, namely copepods. Predators are a highly diverse FFG, and typically represent a stable contribution to the macroinvertebrate taxa, however overabundance can be indicative of disturbed systems.

Predators typically represent a stable contribution to the macroinvertebrate taxa but are usually classified as over-abundant when the predator: prey ratio exceeds 0.2, and usually represent <45% of the overall assemblage(Kaboré et al., 2016; Masese et al., 2014; Rai et al., 2019; Sitati et al., 2021). Some suggested reasons for domination by predator taxa have included prey communities able to support large predator abundances (short life history traits) and seasonality of prey availability within the overall community; however high predator abundances are often linked to disturbances, poor water quality and surrounding land use(Carrasco-Badajoz et al., 2022; Edegbene & Akamagwuna, 2022; Miserendino & Masi, 2010; Rai et al., 2019; Sitati et al., 2021). The dominance of predators within the edge habitats of most sites would suggest that these sites are highly disturbed with poor water and/or habitat quality, which is consistent with the noted lower than expected diversity and abundance of tolerant taxa, particularly downstream of Lake Callide.

Figure 3-17 Functional Feeding Guides (FFGs) of macroinvertebrate taxa (high contributing species -90%) within edge (top) and bed (bottom) habitats. FFGS present in the study included filtering collectors (FC), gathering/filtering collectors (GC/FC), gathering collectors (GC), predators (P), predators/gat5hering collectors (P/GC), predators/filtering collectors (P/GC/FC), predators/macrophyte piercers (P/MP), predators/scavengers (P/Sv), predators/ scrapers (P/S), predators/scrapers/gathering collectors (P/S/GC), predators/scrapers/parasites (P/S/PA), predators/shredders (P/Sh), scrapers (S), scrapers/gathering collectors (S/GC).

Callide Power Station •42

3.3.4 AUSRIVAS MODELLING

Within edge habitats all sites were in significantly impaired condition including the control site. Within bed habitats the control site recorded better than reference condition and site AB8 the furthest downstream recorded reference condition bed habitat. Sites more directly downstream of Lake Callide such as AB4, AB6, and AB7 all had significantly impaired bed habitat and downstream site AB5 had severely impaired bed habitat. As mentioned previously, the habitat condition of site AB1 was superior to the condition of the downstream Callide Creek sites due to higher variability in the substrate and microhabitat.

Table 3-2 OE50 scores from the March 2023 data. Bands are indicated in brackets and by cell colour; dark green (X) = more biologically diverse than reference site; light green (A) = reference condition; yellow (B) = significantly impaired; orange (C) = severely impaired; red (D) = extremely impaired.

Site	OE50 Edge scores	OE50 Bed Scores
Control – Upstream Callide Creel	<	
AB1	0.72(B)	0.96(X)
Test – Downstream Callide Creek	s(B)	
AB4	0.88(B)	1.06(B)
AB5	0.85(B)	0.78(C)
AB6	0.83(B)	0.97(B)
AB7	0.72(B)	0.77(B)
AB8	0.86(B)	0.9(A)

3.4 FISH, MACROCRUSTACEANS, AND REPTILES

Diversity, community assemblages and recruitment and biomass of all aquatic species caught at sites during the survey event are explored below.

3.4.1 FISH

WQO COMPARISSON

Ratio of Observed to Expected native species (O/E50) and exotic fish species WQO values were defined by DEHP (2011) for sites along the main trunk of Callide Creek only. This meant that data from site AB9 could not be used as it was located in a different catchment (Kroombit Creek). Overall, control sites scored better than test sites, but sites were typically less diverse than expected.

Control site AB1 was the only site along the main trunk of Callide Creek that met the WQO for O/E50 values (Table 3-3). All test sites fell below the O/E50, meaning that they contained fewer native taxa that would be expected in. All sites except control site AB1 and test site AB3 contained *Gambusia holbrooki*. The species has been recorded within Callide Creek main trunk before and is listed within the defined WQO. However, as no site recorded non-native species not listed within the WQOs or more than two non-native species, all sites met the WQO for alien taxa.

Site	Treatment	O/E50	Alien Taxa
AB1	Control	1	0
AB2	Test	0.7857	1
AB3	Test	0.5714	0
AB4	Test	0.5714	1
AB5	Test	0.2143	1
AB6	Test	0	1
AB7	Test	0.3571	1
AB8	Test	0.8571	1

Table 3-3 Comparison of Callide Creek main trunk fish WQOs to observed fish diversity indices of each assessed reach. Highlighted values indicate non-conformance with the defined biological WQO.

DIVERSITY

Across the study area a total of 3,863 individuals representing 19 taxa were recorded in varying abundances across sites (Figure 3-18; Table 3-4). Species recorded in higher abundances included bony bream (*Nematalosa erebi*, n=1032), fly-specked hardyhead (*Craterocephalus stercusmuscarum*, n=955), Agassizii's glassfish (*Ambassis agassizii*, n= 513), and barred grunter (*Amniataba percoides*, n = 501). Agassizii's glassfish was additionally the most abundant species occurring at all but one site (AB6). Other widespread taxa included fly-speckled hardyhead (n=6), mosquitofish (*Gambusia holbrooki*, n= 6), and carp gudgeon (*Hypseleotris sp.*, n=6). Conversely, the larger-bodied southern saratoga was only represented by one individual recorded in the deepest waterbody; Lake Callide site AB2.

AB1 (14 taxa) had the highest taxa richness across the surveyed sites followed by downstream Callide Creek site AB8 (13 taxa). Downstream of Lake Callide sites AB5, AB6 and AB7 had the lowest taxa richness and fish abundance. Taxa that prevailed at these less diverse sites included Agassizi's glassfish, mosquitofish (*Gambusia holbrooki*), and southern purplespotted gudgeon (*Mogurnda adspersa*). Sites AB5, AB6 and AB7 consisted of small, shallow pools dense with macrophytes and therefore there was limited available macrohabitat and food sources available for a wider range of species. In Callide Creek taxa exclusively recorded in the upstream site AB1 and the downstream site AB8 included golden perch (*Macquira ambigua*), barred grunter (*Amniataba percoides*), spangled perch (*Leiopotherapon unicolor*), bony bream (*Nematalosa erebi*), Hyrtl's catfish (*Neosilurus hyrtlii*) and freshwater longtom (*Strongylura krefftii*). The presence of these species is likely attributed to more diverse macrohabitats and microhabitats. These larger bodied taxa, most of which are carnivores or omnivores need larger areas and greater access to suitable food sources to meet their reproductive and survival needs. Therefore AB1 and AB8 as larger, more connected, more diverse aquatic habitats are more likely to support these species.

Fish abundance was greatest within Lake Callide at site AB3 (n=1515), followed by AB2 (n=1010) and greatly exceeded the reference site AB9 at Lake Kroombit (n=202). The smaller Lake Kroombit was less diverse than the test sites in Lake Callide as only six taxa were recorded at AB9 whereas in

comparison 13 taxa were recorded across sites AB2 and AB3. Taxa recorded in both lakes included Agassizii's glassfish, carp gudgeon, Hyrtl's catfish and freshwater catfish (*Tandanus tandanus*). Species absent from the test sites that were present in the reference included spangled perch (*Leiopotherapon unicolor*) and eastern rainbowfish (*Melanotaenia splendida*). Overall, the larger Lake Callide supported more individuals and taxa as predicted.

EXOTIC SPECIES

Sites AB5 and AB6 were dominated by the exotic species mosquitofish (*Gambusia holbrooki,* n=107) which were also present at sites AB2, AB4, AB7 and AB8. Mosquitofish were present in low numbers (n=2) in Lake Callide and were not recorded in Lake Kroombit nor upstream at site AB1.

COMMUNITY ASSEMBLAGES

Typically, downstream creek site assemblages were dominated by small-bodied fish with site AB8 additionally supporting medium bodied species such as spangled perch (*Leiopotherapon unicolor*) and bony bream. Whereas upstream at Callide Creek site AB1 there was more diverse assemblage of fish and higher abundances of medium bodied fish such as bony bream and spangled perch. Within Lake Callide larger individuals such as southern saratoga (*Scleropages leichardti*) that require bigger and deeper bodies of water are a part of the system.

Species stocked by the Callide Valley Native Fish Stocking Association (CVNFSA) within Lake Callide include golden perch (*Macquaria ambigua*), barrumundi (*Lates calcarifer*), southern saratoga (*Scleropages leichardti*) and sleepy cod (*Oxyeleotris lineolata*) of which the three latter species were recorded at Lake Callide and downstream in the case of sleepy cod, in low abundances and likely represent translocated populations. One golden perch was recorded upstream of the dam wall at site AB1.

RECRUITMENT AND BIOMASS OF FISH

Variation in fish length suggests the presence of several different age/size classes (fingerlings, juveniles and adults) at all sites excluding AB6 where no fish were recorded (Table 3-5). Species recorded in low abundances such as *Strongylura kreffti* (freshwater longtom), golden perch and southern saratoga do not demonstrate this pattern and their sizes indicate adult individuals. These individuals may then only be present in the environment through stocking and associated dispersal and not from local populations within Lake Callide and Callide Creek. For most of the taxa present within site assemblage variation in size classes suggests successive generations and that both sites are providing suitable nesting habitat as all the species identified are potadromous (i.e. their lifecycle is completed in freshwater). The invasive mosquitofish individuals were mostly small indicating they are the result of successive generations where there a few reproductively active individuals producing many offspring that are heavily predated and/or resource limited due to their population density, leading to mortality before they reach full maturity.

The sites downstream of Callide Dam, excluding AB8 the furthest from Lake Callide, were populated by relatively small fish, indicating that present habitat may not be sufficient to support larger fish species. However, these sites may still serve as nursery habitats for fish before they move into areas with deeper pools like those provided at site A8 to mature. The availability of suitable nesting and spawning habitat within these more degraded reaches is likely a factor that limited the presence of juveniles of other species.

Figure 3-18 Abundance and taxa richness of fish caught at all sites.

Table 3-4 Fish captured in March 2023 survey.

		Reference Lake Kroombit	Upstream Callide Creek	Lake Callide		Downstrea	m Callide Cree	k		
Species	Common name	AB9	AB1	AB2	AB3	AB4	AB5	AB6	AB7	AB8
Ambassidae				,	,					
Ambassis agassizii	Agassiz's glassfish	46	20	225	182	18	1		6	15
Anguillidae										
Anguilla reinhardtii	longfinned eel									3
Apogonidae										
Glossamia aprion	mouth almighty		7	24	19	14				1
Atherinidae										
Craterocephalus stercusmuscarum	fly-specked hardyhead		50	483	339	18			1	64
Belonidae										
Strongylura krefftii	freshwater longtom		1	3	5					
Butidae										
Oxyeleotris lineolata	sleepy cod				6	1				
Clupeidae										
Nematalosa erebi	bony bream		30	225	521					256
Eleotridae										
Hypseleotris sp.	carp gudgeon	6	6	1		2			103	6
Mogurnda adspersa	southern purplespotted gudgeon		1			10	35		20	
Latidae										
Lates calcarifer	barramundi			2	3					
Melanotaeniidae										
Melanotaenia splendida	eastern rainbowfish	50	22						117	10
Osteoglossidae										
Scleropages leichardti	southern saratoga			1						
Percichthyidae										
Macquaria ambigua	golden perch		1							1
Plotosidae										
Neosilurus hyrtlii	Hyrtl's catfish	68	26	1						15

www.hydrobiology.biz

		Reference Lake Kroombit	Upstream Callide Creek	Lake Callide		Downstrea	m Callide Creek	<		
Species	Common name	AB9	AB1	AB2	AB3	AB4	AB5	AB6	AB7	AB8
Porochilus rendahli	Rendahl's catfish		1			1	18			3
Tandanus tandanus	freshwater catfish	4	1	3		1				
Poeciliidae						·	·			
Gambusia holbrooki	mosquitofish			2		6	107	13	56	2
Terapontidae										
Amniataba percoides	barred grunter		18	40	440					3
Leiopotherapon unicolor	spangled percch	28	12							17
Total		202	196	1010	1515	71	161	13	312	396
Taxa richness		6	14	12	8	9	4	1	6	13

Table 3-5 Minimum, maximum and average lengths (mm) of taxa recorded at each site.

					I									1 _														
		Referenc Kroombi			Upstr Creek	eam Calli (de	Lake	Callide					Dowr	nstream C	allide Cre	eek											
		AB9			AB1			AB2			AB3			AB4			AB5			AB6			AB7			AB8		
		Total len	gth(mm)		Total	length(mr	n)	Total	length(mr	m)	Total	length(mr	n)	Total	length(mr	m)	Total	length(m	ım)	Total	length	(mm)	Total	length(m	m)	Total	length(m	m)
Species	common name	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max
Ambassidae													·															
Ambassis agassizii	Agassiz's glassfish	40	64	77	26	37	58	21	34	57	23	35	54	20	27	35	41	41	41	-	-	-	24	27	30	34	47	62
Anguillidae	, ,																											
Anguilla reinhardtii	longfinned eel	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	540	763	1000
Apogonidae																												
Glossamia aprion	mouth almighty	-	-	-	46	93	130	37	65	112	27	59	130	22	38	94	-	-	-	-	-	-	-	-	-	124	124	124
Atherinidae																												
Craterocephalus stercusmuscarum	fly-specked hardyhead	-	-	-	26	46	71	27	42	75	16	32	78	22	28	37	-	-	-	-	-	-	26	26	26	25	46	93
Belonidae																												
Strongylura krefftii	freshwater longtom	-	-	-	257	257	257	675	735	780	255	442	546	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

www.hydrobiology.biz

		Referen Kroomb			Upstr Creek	eam Callio	de	Lake	Callide					Dowr	nstream C	Callide Cr	eek											
		AB9			AB1			AB2			AB3			AB4			AB5			AB6			AB7			AB8		
		Total ler	ngth(mm)		Total l	length(mn	ר) י	Total	length(mr	n)	Total	length(mr	n)	Total	length(mi	m)	Total	length(n	nm)	Total	length((mm)	Total	length(n	וm)	Total	ength(mr	n)
Species	common name	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max
Butidae																												
Oxyeleotris lineolata	sleepy cod	-	-	-	-	-	-	-	-	-	46	202	410	87	87	87	-	-	-	-	-	-	-	-	-	-	-	-
Clupeidae																												
Nematalosa erebi	bony bream	-	-	-	25	152	256	34	121	370	64	120	370	-	-	-	-	-	-	-	-	-	-	-	-	68	216	318
Eleotridae																												
Hypseleotris sp.	carp gudgeon	28	40	47	21	26	32	20	20	20	-	-	-	18	25	32	-	-	-	-	-	-	18	30	38	16	19	21
Mogurnda adspersa	southern purplespotted gudgeon	-	-	-	78	78	78	-	-	-	-	-	-	21	42	61	26	41	75	-	-	-	21	31	57	-	-	-
Latidae																												
Lates calcarifer	barramundi	-	-	-	-	-	-	880	925	970	800	852	925	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Melanotaeniidae																												
Melanotaenia splendida	eastern rainbowfish	32	64	90	43	74	97	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	26	31	38	26	39	78
Osteoglossidae																												
Scleropages leichardti	southern saratoga	-	-	-	-	-	-	700	700	700	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Percichthyidae																												
Macquaria ambigua	golden perch	-	-	-	554	554	554	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	252	252	252
Plotosidae																												
Neosilurus hyrtlii	Hyrtl's catfish	118	171	288	98	197	324	220	220	220	-	-			-	-	-	-	-		-	-	-	-	-	121	134	156
Porochilus rendahli	Rendahl's catfish	-	-	-	127	127	127	-	-	-	-	-	-	76	76	76	64	75	86	-	-	-	-	-	-	100	136	162
Tandanus tandanus	freshwater catfish	137	180	205	452	452	452	80	159	225	-	-	-	445	445	445	-	-	-	-	-	-	-	-	-	-	-	-
Poeciliidae																												

Callide Power Station •49

www.hydrobiology.biz

		Referenc Kroombi			Upstr Creek	eam Callio	de	Lake	Callide					Dowr	nstream (Callide Cr	eek											
		AB9			AB1			AB2			AB3			AB4			AB5			AB6			AB7			AB8		
		Total len	gth(mm)		Total	length(mn	n)	Total	ength(mr	n)	Total l	ength(mn	n)	Total	length(m	m)	Total	length(m	ım)	Total	length((mm)	Total	length(m	n)	Total l	length(mn	n)
Species	common name	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max
Gambusia holbrooki	Mosquitofish*	-	-	-		-		20	21	21	-	-	-	18	26	31	18	27	38	17	27	36	21	28	36	36	39	41
Terapontidae																												
Amniataba percoides	barred grunter	-	-	-	46	87	180	26	86	135	12	86	196	-	-	-	-	-	-	-	-	-	-	-	-	92	143	174
Leiopotherapon unicolor	spangled perch	66	116	213	80	121	186	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	88	132	200

*exotic

3.4.2 MACROCRUSTACEANS

Across the surveyed sites, a total of three macrocrustacean taxa were recorded with assemblages notably different upstream and downstream of Callide Dam (Figure 3-19, Table 3-6). Only freshwater shrimp (*Atyidae sp.*) were recorded downstream of Callide Dam and only at sites AB4 (n=5) and AB7 (n=20). No macrocrustaceans were recorded at AB5, AB6 and AB8 likely a result of the reduced available habitat. Upstream of the Callide Dam spillway, where more water and habitat was available at sites AB3, AB2 and AB1 macrocrustacean taxa richness was higher as two taxa were present: redclaw crayfish (*Cherax quadricarinatus*); and freshwater prawns (*Macrobrachium sp.*). Abundance of these two taxa was highest at site AB3 (n=43) followed by similarly abundant sites AB1(n=15) and AB2 (n=14). At the reference site AB9, a smaller lake than Lake Callide macrocrustacean abundance was lower (n = 9) and only freshwater prawn was recorded.

Figure 3-19 Abundance and taxa richness of macrocrustaceans caught at all sites - no macrocrustaceans were captured or observed at AB5, AB6 or AB8.

Table 3-6 Macrocrustaceans captured in March 2023 survey.

		Reference	Upstream Callide Creek	Lake Call	ide	Downstre	eam Callide	Creek		
Таха	common name	AB9	AB1	AB2	AB3	AB4	AB5	AB6	AB7	AB8
Atyidae	freshwater shrimp					5			20	
Cherax quadricarinatus	redclaw crayfish		4	12	23					
Macrobrachium	freshwater prawn	8	11	2	20					
Total	8	15	14	43	5			20		

3.4.3 REPTILES

Krefft's turtle (*Emydura krefftii*) was present at all sites except for AB7 and abundant at sites AB9 (n=49), AB1 (n-40) and AB8 (n=45). The remaining four species were present at low abundances, each present across a few sites. Control site AB1 which had greater availability of microhabitats and better water quality, had the highest taxa richness with all five species recorded. Single broad-shelled river turtles were present at sites AB1, AB7 and AB8. Sawshell turtles were also recorded in low abundances at sites AB9 (n=3), AB1 (n=1) and AB8 (n=1). Eastern long-necked turtles were recorded at AB1 (n=1) and AB3 (n=2). The critically endangered White throated snapping turtle was only recorded at the most diverse site AB1 (n=1). The dissolved oxygen at this site was significantly higher than recorded at the downstream sites and more conducive to turtle physiology (i.e. cloacal breathing). Habitats downstream are also likely limited in the number of turtles they can support due to the size of the waterbodies and the abundance of microhabitats and food. The infrastructure of the Dam may create barriers to dispersal of turtles, especially when population numbers are low, as in the case of the white-throated snapping turtle.

Figure 3-20 Abundance and taxa richness of reptiles caught at all sites - no reptiles were captured or observed at AB14.

Table 3-7 Aquatic reptiles captured in March 2023 survey.

		Reference Lake Kroombit	Upstream Callide Creek	Lake Call	ide	Downstre	eam Callide	e Creek		
Species	common name	AB9	AB1	AB2	AB3	AB4	AB5	AB6	AB7	AB8
Chelidae										
Chelodina expansa	broad-shelled river turtle		1						1	1
Chelodina longicollis	eastern longnecked turtle		1		2					
Elseya albagula	white-throated snapping turtle		1							
Emydura krefftii	Krefft's river turtle	49	40	21	29	6	4	1		45
Myuchelys latisternum	sawshelled turtle	3	1							1
Total		52	44	21	31	6	4	1	1	47

3.5 BIOTA TISSUE ANALYSIS

3.5.1 PFAS

The target human and ecological health species were chosen based on the Sampling Analysis and Quality Plan (SAQP) (Epic Environmental, 2022). The human and ecological health target biota caught and subsequently analysed are displayed in Table 3-8.

HUMAN HEALTH TARGET SPECIES

To inform the human health risk assessment, the target samples were edible size biota that are more commonly consumed by local residents. This provides the most representative dataset regarding risk to human health via consumption of fish.

The target freshwater species for human health assessment as designated in the SAQP (Epic Environmental, 2022) were:

- Barramundi (Lates calcarifer);
- Crayfish (Cherax quadricarinatus); and
- Yellowbelly (Macquaria ambigua).

As the target species were not well represented at all sites within in the catchment it was decided that additional human health target species should be selected. These species were those potentially eaten by humans and were selected based on local knowledge and those defined as common edible freshwater species for PFAS sampling programs (Queensland Health, no date). The additional species were:

- Eeltail catfish (Tandanus tandanus);
- Hyrtl's catfish (*Neosilurius hyrtlii*);
- Rendahl's catfish (Porochilus rendahli); and
- Sleepy cod (Oxyeleotris lineolata).

The results were compared against human health screening criteria (see Table 5-2 in Appendix A).

ECOLOGICAL HEALTH TARGET SPECIES

Target species for the ecological risk assessment vary from the human health risk assessment and largely represent lower trophic organisms that are predated by higher order species.

The target freshwater species for ecological health assessment as designated in the SAQP were:

- Eeltail catfish (Tandanus tandanus)
- Eastern rainbowfish (Melanotaenia splendida)
- Fresh water mussels (Velesunio sp.)
- Spangled perch (*Leiopotherapon unicolour*)
- Freshwater prawn (*Macrobrachium sp.*)

As only freshwater prawns were well represented in the catchment the following additional target species were selected:

- Agassiz's perchlet (Ambassis agassizii);
- Fly-specked hardyhead (Craterocephalus stercusmuscarum); and
- Freshwater shrimp (Atyidae).

Table 3-8 Human and ecological health species caught and selected for analysis.

		Reference	Control						
		Lake Kroombit	Callide Creek U/S	Lake Cal	lide	Callide C	reek D/S		
Common name	Species	AB9	AB1	AB2	AB3	AB4	AB5	AB7	AB8
Human health		Ĭ							
Barramundi	Lates calcarifer			✓	✓				
Crayfish	Cherax quadricarinatus		✓	✓	✓				
Eeltail Catfish	Tandanus tandanus	\checkmark	\checkmark	✓		\checkmark			
Hyrtl's Catfish	Neosilurus hyrtlii	✓	✓						~
Rendahl's Catfish	Porochilus rendahli		\checkmark			\checkmark	\checkmark		
Sleepy cod	Oxyeleotris lineolata		✓			~			
Yellowbelly	Macquaria ambigua		\checkmark						\checkmark
Ecological health									
Agassiz's perchlet	Ambassis agassizii	\checkmark	✓		✓	\checkmark	✓	\checkmark	\checkmark
Flyspecked Hardyhead	Craterocephalus stercusmuscarum		√	✓	✓	✓		~	~
Freshwater prawn	Macrobrachium sp.	\checkmark	\checkmark	~	✓				
Freshwater shrimp	Atyidae					✓		✓	

RESULTS

Results are presented below for detectable concentrations of PFAS, metal/metalloids and fluoride. Collected data has been tabulated in Appendix E and the relevant laboratory reports are provided in Appendix F.

The results of the human health target species were compared against human health screening criteria values (see Table 5-2 in Appendix A). The results of the ecological health target species were compared against ecological screening criteria values (see Table 5-3 in Appendix A).

Human Health Target Species

No PFOA (Perfluorooctanoic Acid) was detected in any sample, however PFOS¹ (Perfluorooctanesulfonic acid) were detected in five of the six human health targets and values were above guideline levels for each sample tested apart from *O. lineolata* (Figure 3-21). PFOS was detected at both the control site and test sites on Callide Creek and results indicated an increase in PFOS at sites furthest downstream, with the highest values recorded in *N. hyrtlii* at site AB8. The concentration of PFOS within the edible portion on *M. ambigua* was broadly similar to the rest of the body.

No PFOS was detected in biota tissue from either the reference site on Kroombit Lake or the test sites on Lake Callide. It should be noted that PFOS was not detected in barramundi (caught in Lake Callide at sites AB2 and AB3), a species highly likely to be targeted and consumed by humans.

¹ PFOS represents PFHxS + PFOS

Macquaria ambigua

Neosilurus hyrtlii

Figure 3-21 PFOS measured from human health target species. Green line represents human health guideline value (NEPM, 2020).

Callide Power Station •58

Oxyeleotris lineolata

Ecological Health Target Species

PFOS detections were limited to test sites on Callide Creek, with all values except one (Atyidae, AB4) being above both the avian and mammalian diet guideline levels (NEMP, 2020) (Figure 3-22). PFOS concentration showed an increase at sites further downstream, with the highest values recorded in *A. agassizii* at AB8.

There were no detections of PFOS at the reference site on Kroombit Lake, the control site on Callide Creek or at test sites on

Figure 3-22 PFOS measured from ecological health target species. Lines represents avian (blue) and mammalian (red) diet ecological guideline values (NEMP, 2020).

3.5.2 METALS

ARSENIC

There are no available guideline values for arsenic in biota tissue therefore the following represents comparative assessment only.

Arsenic was detected at most sites across the study area with no obvious pattern observed. Macrocrustaceans (Atyidae and *Macrobrachium sp.*) tended to have higher arsenic levels than fish, with the highest concentration recorded in *Macrobrachium sp.* at Callide Creek control site AB9. Arsenic is naturally higher in crustacean tissue compared to fish tissue and values do not indicate obvious arsenic contamination in the receiving environment (Stewart & Turnbull, 2015).

Arsenic levels did not vary considerably between the edible portion and the rest of body in the *L. calcarifer* tested.

Ambassis agassizii

Cherax quadricarinatus

Craterocephalus stercusmuscarum

Neosilurus hyrtlii

Oxyeleotris lineolata

Porochilus rendahli

Figure 3-23 Arsenic concentration in biota tissue.

BARIUM

There are no available guideline values for barium in biota tissue therefore the following represents comparative assessment only.

Barium was detected at most sites with no obvious relationship differences between test and control/reference sites (Figure 3-24). Similar to arsenic, levels tended to be higher in macrocrustaceans (*C. quaricarinatus* and *Macrobrachium sp.*,) compared to fish, with the highest value recorded in *C. quadricarinatus* at control site AB1. Barium is known to be naturally higher in crustaceans relative to fish (Verbruggen et al., 2020).

Ambassis agassizii

Cherax quadricarinatus

Craterocephalus stercusmuscarum

Neosilurus hyrtlii

Porochilus rendahli

Figure 3-24 Barium concentration in biota tissue.

Callide Power Station •66

Tandanus tandanus

CHROMIUM

There are no available guideline values for chromium in biota tissue therefore the following represents comparative assessment only.

Chromium was detected at most sites with no obvious relationship between test and control/reference sites, however notable elevations were recorded at control site AB1 and test sites on Lake Callide (Figure 3-25). The highest chromium value was recorded in *T. tandanus* at control site AB1.

Ambassis agassizii

Cherax quadricarinatus

Craterocephalus stercusmuscarum

Tandanus tandanus

Figure 3-25 Chromium concentration in biota tissue.

Callide Power Station •69

COPPER

Copper was detected at most sites with no obvious relationship between test and control/reference sites (Figure 3-26). All values were below generally expected levels (GELs) except for *Macrobrachium sp.* at control site AB1. Copper levels in the edible portions of *L. calcarifer* and *C. quadricarinatus* were broadly similar to those recorded in the rest of body samples.

Ambassis agassizii

Cherax quadricarinatus

Craterocephalus stercusmuscarum

Neosilurus hyrtlii

Oxyeleotris lineolata

Figure 3-26 Copper concentration in biota tissue. Green lines represent GELs (ANZFA, 2001).

Porochilus rendahli

MOLYBDENUM

There are no available guideline values for molybdenum in biota tissue therefore the following represents comparative assessment only.

Molybdenum was detected at most sites with no obvious relationship between test and control/reference sites (Figure 3-27). No molybdenum was detected in either the edible portion or rest of body sample from *N. hyrtlii* at site AB2.

Ambassis agassizii

Cherax quadricarinatus

Craterocephalus stercusmuscarum

Figure 3-27 Molybdenum concentration in biota tissue.

SELENIUM

Selenium was detected at most sites with no obvious relationship between test and control/reference sites (Figure 3-28). Levels were below GELs for all sites and there was no difference in concentrations between the edible portion and rest of body samples.

Ambassis agassizii

Cherax quadricarinatus

Craterocephalus stercusmuscarum

Neosilurus hyrtlii

Oxyeleotris lineolata

Tandanus tandanus

Figure 3-28 Selenium concentration in biota tissue. Green lines represent GELs (ANZFA, 2001).

AB5	AB7	AB8	

STRONTIUM

There are no available guideline values for stontium in biota tissue therefore the following represents comparative assessment only.

Strontium was detected at most sites with no obvious relationship between treatments (Figure 3-29). Strontium levels were broadly similar in the edible portion and rest of body samples.

Ambassis agassizii

Cherax quadricarinatus

Craterocephalus stercusmuscarum

	•			•	
3 Sit	AB4	AB5	AB7	AB8	

Neosilurus hyrtlii

Oxyeleotris lineolata

Figure 3-29 Strontium concentration in biota tissue.

Callide Power Station •80

Porochilus rendahli

VANADIUM

There are no available guideline values for vanadium in biota tissue therefore the following represents comparative assessment only.

Vanadium detection was limited to a single sample of *T. tandanus* at Lake Callide test site AB2 (Figure 3-30).

Tandanus tandanus

Figure 3-30 Vanadium concentration in biota tissue.

ZINC

Zinc was detected at most sites with no obvious relationship between treatments (Figure 3-31). Values were above GELs for *A. agassizii, C. stercusmuscarum, Macrobrachium sp.* and *P. rendahli*, with exceedances occurring at the reference site in Kroombit Lake, both control and test sites on Callide Creek and within Lake Callide. Zinc levels were similar between edible portion and rest of body samples.

Ambassis agassizii

Cherax quadricarinatus

Craterocephalus stercusmuscarum

Neosilurus hyrtlii

Oxyeleotris lineolata

Porochilus rendahli

Figure 3-31 Zinc concentration in biota tissue.

THORIUM

There are no available guideline values for thorium in biota tissue therefore the following represents comparative assessment only.

Thorium detections were limited to the control site AB1 and Callide Lake test site AB2, with no detections recorded at Lake Kroombit reference site AB9.

Lates calcarifer

Macrobrachium sp.

Tandanus tandanus

Figure 3-32 Thorium concentration in biota tissue.

FLUORIDE

There are no available guideline values for fluoride in biota tissue therefore the following represents comparative assessment only.

Fluoride was detected at just two sites; Lake Callide test site AB3 and Callide Creek test site AB8 (Figure 3-33).

10 8 Concentration (mg/kg) 6 4 2 0 AB9 AB2 AB1 AB3 AB4 AB5 AB7 AB8 Site Above detection edible portion

Cherax quadricarinatus

Macquaria ambigua

Figure 3-33 Fluoride concentration in biota tissue.

3.5.3 SUMMARY

The results of the biota tissue analysis are summarised in Table 3-8.

PFOS concentrations in biota appear increase downstream and are highest at the site furthest downstream (AB8). It should also be noted that site AB8 is downstream from the township of Biloela which may be another potential source of PFOS. PFOS was also detected in biota at the control site upstream of CP on Callide Creek (AB1).

There were no detections of PFOS within Lake Callide, which reflects surface water sampling in the lake, where PFOS was either not detected or was present at low levels. Interestingly, PFOS concentrations were relatively low at site AB4, despite being closest in positioned in proximity to the CPS, however it should be noted that this site is located just upstream of the main channel draining the CPS, potentially away from the bulk of PFOS influence.

Most of the fish species identified in the current study are potamodromus, meaning that they may migrate upstream and downstream during their lifecycle. The movement habits and subsequent degree of PFOS exposure of the fish analysed in the current study is unknown and could have potentially influenced results. Fish movement in the catchment is influenced by seasonal flow patterns and barriers to fish movement, these include the dam wall at Lake Callide and Callide Weir.

There was no obvious difference between contaminant concentrations between the edible portions and rest of body samples where these were analysed separately. This indicates that contaminants do not appear to accumulate in certain organs/body parts.

Contaminant	Trends and observations regarding treatments	Trends and observations regarding species
PFOS	Detected at both control sites and test sites on Callide Creek with an increasing trend downstream on Callide Creek	Large-bodied predators (<i>M. ambigua</i>), large/medium predator/omnivores (<i>O. lineolata</i> and various eel-tail catfish) that may be consumed by humans. Small- bodied micropredator/omnivores (e.g <i>A. aggassizii</i>) and scavengers (Atyidae) likely consumed by higher order organisms.
Arsenic	No obvious trend	Higher concentration in macrocrustaceans
Barium	No obvious trend	Higher concentration in macrocrustaceans
Chromium	No obvious trend	No obvious trend
Molybdenum	No obvious trend	No obvious trend
Selenium	No obvious trend	No obvious trend
Vanadium	No obvious trend	Detection limited to a single eel-tail catfish in Lake Callide
Zinc	No obvious trend	No obvious trend - values above guideline levels for most species

Table 3-9 Biota tissue analysis results summary.

Contaminant	Trends and observations regarding treatments	Trends and observations regarding species
Thorium	No obvious trend	No obvious trend
Fluoride	No obvious trend	Detection limited to a single large bodied predator (<i>M. ambigua</i>) and medium-bodied scavenger (<i>C. quadricarinatus</i>) that may be consumed by humans

4. Conclusion

The habitat condition, aquatic biota, and macroinvertebrate communities varied between control/reference sites and test sites. Upstream of Callide Dam within Callide Creek habitat condition was excellent and aquatic biota and macroinvertebrates were abundant and diverse for this system. Downstream some disturbance was evident based on the state of the habitat, water quality, and macroinvertebrate assemblages. Habitat quality overall was in good to excellent condition, with most sites limited due to lower water depth, availability of micro and macroinbitats and by high fine sediment content. Lake Callide, a larger water body with sections of sheltered habitat was able to support similar, and in some cases more diverse aquatic biota and macroinvertebrates communities than the comparable reference site Lake Kroombit. Analysis of historical water quality showed that site AB4 had high conductivity (2,631µS/cm) and that dissolved oxygen (%saturation) was relatively low across all sites, in particular downstream of Lake Callide.

PFOS was detected in biota at sites on Callide Creek both upstream and downstream of the CP with most concentrations being above human and ecological health guideline levels. No PFOS was detected in Lake Callide or within Lake Kroombit. PFOS concentrations appear to increase with increasing distance downstream of CPS, with the highest concentrations recorded at the furthest downstream site. Concentration of metals and fluoride did not show an obvious trend across treatments. Where guidelines (generally expected levels) were available, most metals/metalloids concentrations were below respective guidelines, except for zinc. However, zinc concentrations were above guideline levels regardless of species and site.

5. REFERENCES

- ANZFA. (2001). Generally Expected Levels (GELs) for Metal Contaminants. *Australia New Zealand Food Authority*.
- ANZG. (2018). Australian and New Zealand Guidelines for Fresh and Marine Water Quality. *Australian and New Zealand Governments and Australian State and Territory Governments, Canberra ACT, Australia*.
- Carrasco-Badajoz, C., Rayme-Chalco, C., Arana-Maestre, J., Álvarez-Tolentino, D., Ayala-Sulca, Y., & Sanchez-Peña, M. (2022). Aquatic macroinvertebrate trophic guilds, functional feeding groups, and water quality of an andean urban river. *Frontiers in Environmental Science*, *10*. https://www.frontiersin.org/articles/10.3389/fenvs.2022.1003207
- Coyush, J., Nichols, S., Ransom, G., Simpson, J., Norris, R., Barmuta, L., & Chessman, B. (2000). AusRivAS. *AusRivAS: Macroinvertebrate Bioassessment Predictive Modelling Manual Ii*.
- Deciding aquatic ecosystem indicators and local water quality guidelines. (2018). *Department of Environment and Science (DES)*.
- DEHP. (2011). Environmental Protection (Water) Policy 2009 Callide Creek Catchment Environmental Values and Water Quality Objectives. Basin No. 130 (part), including all waters of Callide Creek Catchment within the Dawson River Sub-basin. *State of Queensland (Department of Environment and Heritage Protection DEHP*).
- Department of Environment and Heritage Protection (EHP). (2009). *Queensland Water Quality Guidelines, Version 3, ISBN 978-09806986-0-2*.

- Department of Environment and Science (DES). (2014). *Receiving Environment Monitoring Program* guideline - For use with Environmental Relevant Activities under the Environmental Protection Act (1994).
- Department of Environment and Science (DES). (2018). *Monitoring and sampling manual: Environmental Protection (Water) Policy 2009*.
- Department of Natural Resources and Mines (DNRM). (2001). *Queensland Australian River Assessment* Systems (AUSRIVAS) Sampling and Processing Manual.
- Edegbene, A., & Akamagwuna, F. (2022). Insights from the Niger Delta Region, Nigeria on the impacts of urban pollution on the functional organisation of Afrotropical macroinvertebrates. *Scientific Reports*, *12*, 22551. https://doi.org/10.1038/s41598-022-26659-0
- enHEALTH. (2012). Australian Exposure Factor Guidance Guidelines for assessing human health risks from environmental hazards. *Commonwealth of Australia*.
- Epic Environmental. (2022). Sampling Analysis and Quality Plan (SAQP). *Report Prepared for CS Energy Limited*.
- Kaboré, I., Moog, O., Alp, M., Guenda, W., Koblinger, T., Mano, K., Ouéda, A., Ouédraogo, R., Trauner, D., & Melcher, A. H. (2016). Using macroinvertebrates for ecosystem health assessment in semiarid streams of Burkina Faso. *Hydrobiologia*, *766*(1), 57–74. https://doi.org/10.1007/s10750-015-2443-6
- Masese, F. O., Kitaka, N., Kipkemboi, J., Gettel, G. M., Irvine, K., & McClain, M. E. (2014). Macroinvertebrate functional feeding groups in Kenyan highland streams: evidence for a diverse shredder guild. *Freshwater Science*, *33*(2), 435–450. https://doi.org/10.1086/675681
- Miserendino, M., & Masi, C. (2010). The effects of land use on environmental features and functional organization of macroinvertebrate communities in Patagonian low order streams. *Ecological Indicators ECOL INDIC*, *10*, 311–319. https://doi.org/10.1016/j.ecolind.2009.06.008
- NEMP. (2020). PFAS National Environmental Management Plan. *Heads of EPA Australia and New Zealand*.
- Queensland Health. (n.d.). Guideline for sampling and analysis of seafood suitable for human health risk assessments of PFAS contamination. *Queensland Health, Accessed September 2018 from Https://Www.Qld.Gov.Au/Environment/Assets/Documents/Pollution/Management/Pfas/Pfas-Fish-Sampling-Protocol.Pdf*.
- Rai, A., Tachamo-Shah, R. D., Milner, C., & Shah, D. N. (2019). Seasonal Variation of Functional Feeding Groups and Notation of Its Corresponding Stream Ecosystem Attributes in the Headwaters of Bagmati River, Nepal. *International Conference on Natural Resources, Agriculture and Society in Changing Climate*.
- Sitati, A., Masese, F. O., Yegon, M. J., Achieng, A. O., & Agembe, S. W. (2021). Abundance-and biomassbased metrics of functional composition of macroinvertebrates as surrogates of ecosystem attributes in Afrotropical streams. *Aquatic Sciences*, *83*, 1–15.
- Stewart, I., & Turnbull, A. (2015). Arsenic in Australian Seafood: A Review and Analysis of Monitoring Data.
- Verbruggen, E. M. J., Smit, C. E., & Van Vlaardingen, P. L. A. (2020). *Environmental quality standards for barium in surface water: Proposal for an update according to the methodology of the Water Framework Directive*.

APPENDIX A. METHODS

OVERVIEW

The methods detailed below are based on those stipulated in the SAQP (Epic Environmental, 2022).

HABITAT

Habitat characteristics at sites within riverine habitats (watercourses) were recorded via the use of the Queensland AUSRIVAS River Bioassessment field sheets. Any notable site characteristics and features were recorded and accompanied by photos. A brief site summary was compiled that included notes on bed and bank stability, riparian coverage, substrate coverage, shading and macro and micro-habitat features. For riverine environments, River Bioassessment Program scores (bio-assessment scores; out of 135) were calculated for all sites based on nine AUSRIVAS categories, including: habitat availability (pool/riffle, run/bend ratio); bank stability; streamside cover; bed substrate composition and embeddedness; channel alteration; and presence of scouring and/or deposition. From these scores, an aquatic habitat condition rating was calculated and categorised into: Poor, Fair, Good or Excellent habitat conditions.

A number of surveyed sites were also located with lacustrine habitats. The AquaBAMM method used to score wetlands and riverine systems in Australia is used to assess natural and near natural wetlands and cannot be applied to Lake Callide or Kroombit Dam. Additionally, the assessment focuses on conservation significant species presence and priority species in its scoring rather than the assessment of macro and microhabitat variables and items affecting such variables (i.e. deposition, scouring, etc.). Many defined guidelines for such assessments are drafted overseas but assess similar variables to AquaBAMM. In order to maintain consistency with AUSRIVAS habitat condition assessments, AUSRIVAS Physical Assessment Protocol scores was adapted by Hydrobiology for the assessment of lacustrine habitats. As with riverine sites, all sites were scored and classified as being in poor, fair, good or excellent condition however the scores required for each of these classifications differed to those defined for riverine sites.

WATER QUALITY

DATA COLLECTION AND PROCESSING

Physiochemical parameters were not measured in-situ at the time of the survey as this method was not required by the SAQP (Epic Environmental, 2022) for biota sampling.

The latest in-situ water quality data was provided by the client for the water monitoring points closest to each survey site. Data was as recent as February 2023 but dates back to July 2022. Note that it was provided for background/general consideration.

GUIDELINE COMPARISON

Water quality data provided by the client was compared against the WQO's defined for the Callide Creek catchment (DEHP, 2011) and against ANZG/ANZEEC guideline values where relevant (ANZG, 2018).

MACROINVERTEBRATES

SAMPLE COLLECTION AND PROCESSING

Macroinvertebrate sampling was undertaken in accordance with AUSRIVAS protocols for Queensland streams (DNRM, 2001) and more recent macroinvertebrate sampling manuals (DES, 2018). In order to target macroinvertebrates occurring in different freshwater habitats and to assess varying impact processes, both kick (pool/bed habitat) and sweep (edge habitat) samples were collected from each site. Collected samples were live-picked and returned to the laboratory for identification to family and sub-family (chironomids only) level, where possible. Importantly, macroinvertebrate sampling, processing, identification and enumeration was undertaken by AUSRIVAS accredited scientists.

DATA ANALYSIS

GUIDELINE COMPARISONS

Collected macroinvertebrate data were used to calculate several diversity indices including:

- Taxonomic richness (the number of individual taxa recorded at each site);
- Total abundance (the number of macroinvertebrates at each site);
- Tolerant taxa (the percentage of tolerant taxa in represented within each sites overall assemblage);
- Plecoptera, Ephemeroptera and Trichoptera (PET) richness (the number of pollution-sensitive taxa at each site); and
- SIGNAL (the condition score calculated for each site based on present macroinvertebrates and their associated sensitivity grades).

Calculated diversity index values were compared to relevant biological quality objectives (BQO) for edge and composite (includes run, riffle, pools) habitats defined for the Callide Creek Catchment, which for all catchments in the Fitzroy basin are based on the 20:80 percentile values defined for the central coast region (EHP, 2009).

AUSRIVAS PREDICTIVE MODELLING

The macroinvertebrate and predictor variable (habitat) data were analysed using the AUSRIVAS macroinvertebrate predictive modelling program, version 3.2.2 (Coyush et al., 2000). Based on the period of sampling and the habitat in which macroinvertebrates were collected, the autumn (post-wet) edge and pool predictive models were used to provide an indication of water quality and/or habitat condition.

AUSRIVAS predictive model produces various outputs, of which the most valuable for interpretation is the observed to expected ratio (OE50) score. It provides a measure of biological impairment at each site (Coyush et al., 2000). The OE50 scores are assigned to band sections provided by the model, ranging from Band X (better than AUSRIVAS database reference condition) to Band D (extremely impaired).

FUNCTIONAL FEEDING GUILDS

Macroinvertebrates are often grouped into functional feeding guilds (FFGs) for ease of conceptualisation. FFGs classification of aquatic organisms enhances the knowledge of trophic dynamics in streams by simplifying the benthic community into FFGs. The pattern of FFG distribution has been related to the environmental gradient in the river (River Continuum Concept – Vannote et al., 1980) and can therefore provide an indication of the health of a river system (i.e. should there be changes to the expected distribution of guilds).

Functional feeding guilds were assigned to each taxa recorded in edge and bed habitat, graphed and compared visually among sites and habitats.

FISH, REPTILES AND MACROCRUSTACEANS

DATA COLLECTION AND PROCESSING

During the sampling event, a range of passive (fyke nets, pyramid and box traps) and active (electrofishing) survey methods were utilised. The aforementioned techniques are suitable and commonly used apparatus for the survey of fish (small and large bodies species) and aquatic reptiles. The below methods are also efficient methods for the capture of macrocrustaceans, and while not specifically used for this reason, were commonly caught as by-catch.

All individuals of native species not required for tissue analysis were released after identification and measurement near to where they were captured. All exotic and voucher specimens were euthanised via a lethal dose of Aqui-S® solution in accordance with Hydrobiology's Animal Ethics approval. Exotics were disposed of in accordance with current State legislative requirements.

Fish and aquatic reptile surveys were undertaken in accordance with relevant permits, including:

- Department of Agriculture and Fisheries (DAF) Animal Ethics Approval #CA 2021/02/1462;
- General Fisheries Permit #206951;
- Research permit issued under the provisions of the *Nature Conservation Act 1992-* # P-PTUKI-100325946; and
- Research permit issued under the provisions of the *Forestry Act 1959-* # P-PTC-100325951.

FYKE NETS

At each site with sufficient water, a large dual wing fyke and a smaller single wing fyke were deployed with entrances facing downstream where possible. The large fyke had two 5.1 m wings, a mouth 1m wide and a tunnel 3.2m long. The smaller fyke had a single 4.8 m wing, a mouth 0.6 m wide and a tunnel 3.2 m long. The mesh sizes of the large and small fyke nets were 5 and 3 mm, respectively. A float was placed in the cod end of each fyke net to provide an air space for air breathing fauna (turtles, freshwater snakes etc). Fyke nets were set either in the morning or afternoon following site habitat assessment, electrofishing and macroinvertebrate sampling and processing. Fyke nets were cleared after night deployment.

BOX TRAPS

At each site a total of five box traps were deployed around available microhabitat (i.e. around woody debris, amongst rushes, large rocks/rubble). Each trap was baited with cat biscuits. Box traps were set either in the morning or afternoon following site habitat assessment, electrofishing and macroinvertebrate sampling and processing. Box traps were cleared after night deployment.

PYRAMID TRAPS

Three pyramid traps were deployed at each site amongst suitable microhabitat (i.e. around woody debris, amongst rushes, large rocks/rubble). Traps were baited with cat food, cow organs and fruits). Pyramid traps were set either in the morning or afternoon following site habitat assessment, electrofishing and macroinvertebrate sampling and processing. Pyramid traps were cleared after night deployment.

ELECTROFISHING

Creek Sites

Backpack electrofishing was employed at creek sites in wadable areas using a Smith-root APEX backpack electrofisher fitted with a 28 cm anode ring and a tightly covered dip net (10 mm stretched mesh). Both frequency (300 Hz) and duty cycle (~50%) was fixed to maintain a constant pulse width, with voltage varying according to conductivity levels. Sampling effort aimed to be consistent across habitats, with approximately 600 seconds 'on time' at sites. Due to the conductivity of site AB11 backpack electrofishing could not be performed.

Lake Sites

Boat electrofishing was conducted at Lake Callide sites (AB2 and AB3) and at Lake Kroombit (AB9). Boat electrofishing was undertaken via the use of a 5 m boat fitted with a 5 KVA generator and Smith–Root control box. Each standard boat electrofishing shot was completed of power–on time of approximately 600 seconds (± 5%). Applied voltage varied according to the prevailing conductivity and temperature conditions. Stunned fish were blind sweep-netted from the water with a 3 mm open–mesh dip net fitted to a fibreglass pole.

VERTEBRATE PROCESSING

The following vertebrate processing methods were employed at all sites:

- Fish, macrocrustaceans, and turtles were identified to species level and enumerated;
- Carapace length was taken for each macrocrustacean collected until 20 individuals of the species were recorded for the particular site and capture method. Following this, the individuals would be counted; and
- Each fish specimen was measured for total length until 20 individuals of the species were recorded for the particular site and capture method. Following this, the individuals were counted.

DATA ANALYSIS

Total species richness and abundances was summarised for each class across all sites.

Diversity and composition of sites along the main trunk of Callide Creek were compared against fish WQO values defined by DEHP (2011) OE50 values were calculated by dividing the number of native fish species at each site by 14 to determine a ratio value. The value of 14 was defined within the WQO as the expected number of native species along Callide Creek's main trunk, and the WQO defined the OE50 ratio values as \geq 1. The WQO also specified values for exotic fish species, where the number of alien fish present could not exceed 2 exotic species, with *Carassius austratus* and *Gambusia holbrooki* both previously identified with Callide Creek main trunk.

BIOTA TISSUE ANALYSIS

This study aimed to quantify levels of PFAS, metals/metalloids and fluoride in aquatic organisms relevant to the assessment of risks to human and ecological receptors. Therefore, different species/tissues were be targeted as defined by the SAQP (Epic Environmental, 2022). A range of species were considered for sampling, though the capture of target species was limited by what is caught on each sampling day. Sampling the same species at each site which provided for a more robust dataset and allowed for comparison among treatments/sites.

The following considerations were made:

- If possible, the same species were collected across sites for comparison; and
- If the primary or secondary target species were not present at sites additional species representing the same functional feeding group (i.e. predator, planktivore, omnivores, etc.) were selected.

SAMPLE SIZE AND PROCESSING

The edible portions (fillet/muscle tissue for fish or abdomen flesh for macrocrustaceans) of five or more individuals were combined and processed (composited) for each human health target species at each site where possible. The rest of the body of selected individuals from three species were processed separately to investigate any variability of contaminant concentration within different body parts. This included samples from:

- Yellowbelly (*M. ambigua*);
- Barramundi (L. calcarifer); and
- Crayfish (*C. quadricarinatus*).

The whole bodies of 5 or more individual ecological health target species were combined and processed (composited) at each site where possible.

All dissection, compositing and homogenisation of biota samples were conducted at the primary laboratory to reduce potential contamination in the field.

LABORATORY METHODOLOGIES

Australian Laboratory Services (ALS) was selected as the primary laboratory to perform sample analysis and Eurofins Environmental Testing Australia Pty Ltd (Eurofins) were selected to conduct triplicate analysis. National Measurement Institute (NMI) were selected to conduct additional analysis for lithium, thorium and total fluoride on each sample and for these analyses represent the primary laboratory.

The analytical procedures used by the laboratories selected are in accordance with established internationally recognised procedures such as those published by the United States Environmental Protection Agency (USEPA), American Public Health Association (APHA) and relevant Australian Standards/New Zealand Standards (AS/NZS).

The following PFAS constituents were analysed:

- Perfluorobutane sulfonic acid <0.02(PFBS)
- Perfluoropentane sulfonic acid (PFPeS)
- Perfluorohexane sulfonic acid (PFHxS)
- Perfluoroheptane sulfonic acid (PFHpS)
- Perfluorooctane sulfonic acid (PFOS, both linear and branched)
- Perfluorodecane sulfonic acid (PFDS)
- Perfluorobutanoic acid (PFBA)
- Perfluoropentanoic acid (PFPeA)
- Perfluorohexanoic acid (PFHxA)
- Perfluoroheptanoic acid (PFHpA)
- Perfluorooctanoic acid (PFOA)
- Perfluorononanoic acid (PFNA)
- Perfluorodecanoic acid (PFDA)
- Perfluoroundecanoic acid (PFUnDA)
- Perfluorododecanoic acid (PFDoDA)
- Perfluorotridecanoic acid (PFTrDA)
- Perfluorotetradecanoic acid (PFTeDA)
- Perfluorooctane sulfonamide (FOSA)

- N-Methyl perfluorooctane sulfonamide (MeFOSA)
- N-Ethyl perfluorooctane sulfonamide (EtFOSA)
- N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)
- N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)
- N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)
- N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)
- 4:2 Fluorotelomer sulfonic acid (4:2 FTS)
- 6:2 Fluorotelomer sulfonic acid (6:2 FTS)
- 8:2 Fluorotelomer sulfonic acid (8:2 FTS)
- 10:2 Fluorotelomer sulfonic acid (10:2 FTS)

The primary laboratory (ALS) analysed for the following total metals/metalloids:

- Arsenic
- Barium
- Chromium
- Copper
- Molybdenum
- Selenium
- Strontium
- Uranium
- Vanadium
- Zinc
- Boron

Additional metals analysis was requested that could not be completed by the primary laboratory, these being total lithium and total thorium. A sub-sample was therefore provided to the secondary laboratory (NMI) for this analysis where sample volume was sufficient. Sub-samples were prepared and distributed by ALS.

Sub-samples of each sample were provided to the secondary laboratory (NMI) for analysis of total fluoride where sample volume was sufficient. Sub-samples were prepared and distributed by ALS.

QA/QC

Primary samples consisted of tissue removed from multiple individuals (5-10) that were combined and homogenised. A sub-sample was taken from selected (homogenised) samples to provide duplicate and triplicate QA/QC samples. Duplicate and triplicate samples were collected at a rate of one duplicate and one triplicate every ten primary samples. Duplicate samples were analysed by the primary laboratory (ALS) and triplicate samples were analysed by Eurofins. The primary samples and their respective duplicate/triplicate samples are displayed in Table 5-1.

Table 5-1 Primary samples and their respective duplicate/triplicate samples.

Primary sample	Duplicate	Triplicate
AB2-LC-EP	AB2-BC-DU	-
AB3-CS-WB	AB3-CS-DU	-

Primary sample	Duplicate	Triplicate
AB9-NH-EP	AB9-NH-DU	-
AB1-MA-EP	AB1-MA-DU	AB1-MA-TR
AB1-NH-EP	-	AB1-NH-TR

Rinsate water samples were collected each day by rinsing down sampling equipment to check for potential contamination. Each rinsate sample contained water collected from rinsing the measuring board used to measure and weigh each fish/crustacean. Additionally, a sample of dilute Aqui-S was collected and analysed to check if the anaesthetic was a potential source of contaminants. Laboratory QA/QA measures included method blanks, control samples and method spikes. The results of the QA/QC analysis are detailed in (Appendix B).

SCREENING CRITERIA

Human Health

The PFAS National Environmental Management Plan (NEMP, 2020) provides Australian guidance on food consumption screening criteria for PFAS levels relevant to human health. It should be noted that that the food consumption guideline values were based on FSANZ trigger values that consider 100% of total dietary intake (TDI) (NEMP, 2020 Table 5-2). As such, when considering the consumption of seafood only, they may not be protective for people exposed to PFAS from other unaccounted potential pathways. Additional TDI values were then calculated for an average weigh male (70kg) as defined in national guidelines for assessing human health risks from environmental hazards (enHEALTH, 2012). These values were then compared to the levels of PFAS in biota collected in the current study and are displayed in the associated graphs.

Exposure scenario	Unit	PFOS + PFHxS	PFOA	Note
Tolerable daily intake (TDI)	µg/kg _{₿₩} /day*	0.02	0.16	These criteria are based on 100 % of total dietary intake (TDI) and may not be protective
Calculated TDI for average 70kg adult (µg/day)	µg/day	1.4	11.2	for people exposed to PFAS from other potential pathways.

Table 5-2 Summary of human health screening criteria, extracted from NEMP (2020)

* BW stands for body weight

Ecological

All ecological screening values for the protection against bioaccumulation and secondary poisoning available from NEMP (2020) are summarised in Table 5-3.

Table 5-3 Summary of ecological screening criteria, extracted from NEMP (2020).

Exposure scenario	PFOS	PFOA	Note
Mammalian diet (biota ww food)	4.6 μg/kg	Not available	Based on Canadian guidelines for screening of biota (e.g. fish tissue) samples consumed by mammals and/or birds. The value refers to the concentration of PFOS in the aquatic biota food item. It should be noted that data is not based on relevant species; e.g. wetland birds
Avian diet (biota ww food)	8.2 µg/kg	Not available	in Australia may have higher risk based on size and consumption rates.

GENERALLY EXPECTED LEVELS

Results were compared to historical data and against Generally Expected Levels (GELs) for metals/metalloids in fish and crustaceans according to ANZFA (2001) guidelines. GELs provide a benchmark against which to measure contaminant levels in food. The GELs used in the current study are displayed in Table 5-4.

Table 5-4 GELs used in the current study. Units in mg/kg.

Metal	Crustacean GEL	Fish GEL
Copper	20	2
Selenium	1	2
Zinc	40	15

APPENDIX B. QA/QC

OVERVIEW

Sampling and analysis was conducted by appropriately qualified samplers (including fisheries biologists, aquatic ecologists and contamination scientist with over 70 years of collective experience) following methods consistent with national and state guidelines. Sampling of biota for PFAS followed guidelines specific for the collection of seafood (i.e., fish and crustacean) samples for human health risk assessment (Queensland Health, n.d). This includes measures such as:

- Appropriate species selection;
- Differentiating edible portions specific for human consumption;
- Obtaining sufficient sample sizes;
- Minimising contamination in the field by avoiding materials containing PFAS (e.g. clothing, containers, etc.);
- Conducting sample preparation in a laboratory;
- Chilling/freezing samples promptly after collection; and
- Following a defined SAQP.

DUPLICATES

`

Duplicate samples (collected at a rate of one every ten samples) were collected to assess the precision and repeatability of the primary laboratory. Relative percent differences (RPD) were used to qualify quality control efforts. The duplicates were analysed by the primary laboratory provider (ALS).

The results of the duplicate analysis indicate that all RPDs apart from strontium were below the measurement quality objective (MQO) of \leq 50% (Table 5-5). This indicates that there may be decreased precision of the strontium data analysis provided in this report.

Table 5-5 Duplicate tissue analysis QA/QC results. Shaded cells represent RPD >50%.

			AB2	Duplicat	RPD(%	AB3	Duplicat	RPD(%	AB9	Duplicat	RPD(%	AB1	Duplicat	
Analyte	Units	LOR	Barramundi	е)	Hardyhead	е)	Hyrtlii	е)	Yellowbelly	е	RPD(%)
Arsenic	mg/kg	0.05	0.08	0.07	13	0.22	0.24	9	<0.05	<0.05	-	0.06	0.05	18
Barium	mg/kg	0.1	0.1	<0.1		2.4	2.8	15	<0.1	0.2	-	<0.1	<0.1	-
Boron	mg/kg	5	<5	<5	-	<5	<5	-	<5	<5	-	<5	<5	-
Chromium	mg/kg	0.05	<0.05	<0.05	-	1.4	1.44	3	0.6	0.55	9	<0.05	<0.05	-
Copper	mg/kg	0.1	0.4	0.3	29	0.6	0.6	0	0.4	0.4	0	0.3	0.3	0
Molybdenum	mg/kg	0.05	<0.05	<0.05	-	0.18	0.2	11	0.07	0.07	0	<0.05	<0.05	-
Selenium	mg/kg	0.05	0.16	0.18	12	0.2	0.21	5	0.14	0.13	7	0.44	0.4	10
Strontium	mg/kg	0.1	1.1	0.8	32	52.1	61.3	16	1	5.9	142	0.5	0.4	22
Uranium	mg/kg	0.01	<0.01	<0.01	-	<0.01	<0.01	-	<0.01	<0.01	-	<0.01	<0.01	-
Vanadium	mg/kg	0.5	<0.5	<0.5	-	<0.5	<0.5	-	<0.5	<0.5	-	<0.5	<0.5	-
Zinc	mg/kg	0.5	5.6	4.9	13	53.8	54.3	-1	11.5	15.6	30	10.1	9.3	8
Perfluorobutane sulfonic acid (PFBS)	µg/kg	1	<1	<1	-	<1	<1	-	<1	<1	-	<1	<1	-
Perfluoropentane sulfonic acid (PFPeS)	µg/kg	1	<1	<1	-	<1	<1	-	<1	<1	-	<1	<1	-
Perfluorohexane sulfonic acid (PFHxS)	µg/kg	1	<1	<1	-	<1	<1	-	<1	<1	-	<1	<1	-
Perfluoroheptane sulfonic acid (PFHpS)	µg/kg	1	<1	<1	-	<1	<1	-	<1	<1	-	<1	<1	-
Perfluorooctane sulfonic acid (PFOS) - Linear	µg/kg	1	<1	<1	-	<1	<1	-	<1	<1	-	<1	<1	-
Perfluorooctane sulfonic acid (PFOS) - Branched	µg/kg	1	<1	<1	-	<1	<1	-	<1	<1	-	<1	<1	-
Perfluorooctane sulfonic acid (PFOS)	µg/kg	1	<1	<1	-	<1	<1	-	<1	<1	-	<1	<1	-
Perfluorodecane sulfonic acid (PFDS)	µg/kg	2	<2	<2	-	<2	<2	-	<2	<2	-	<2	<2	-
Perfluorobutanoic acid (PFBA)	µg/kg	5	<5	<5	-	<5	<5	-	<5	<5	-	<5	<5	-
Perfluoropentanoic acid (PFPeA)	µg/kg	2	<2	<2	-	<2	<2	-	<2	<2	-	<2	<2	-
Perfluorohexanoic acid (PFHxA)	µg/kg	1	<1	<1	-	<1	<1	-	<1	<1	-	<1	<1	-
Perfluoroheptanoic acid (PFHpA)	µg/kg	1	<1	<1	-	<1	<1	-	<1	<1	-	<1	<1	-
Perfluorooctanoic acid (PFOA)	µg/kg	1	<1	<1	-	<1	<1	-	<1	<1	-	<1	<1	-
Perfluorononanoic acid (PFNA)	µg/kg	1	<1	<1	-	<1	<1	-	<1	<1	-	<1	<1	-
Perfluorodecanoic acid (PFDA)	µg/kg	1	<1	<1	-	<1	<1	-	<1	<1	-	<1	<1	-

www.hydrobiology.biz

Analyte	Units	LOR	AB2 Barramundi	Duplicat e	RPD(%)	AB3 Hardyhead	Duplicat e	RPD(%)	AB9 Hyrtlii	Duplicat e	RPD(%)	AB1 Yellowbelly	Duplicat e	RPD(%)
Perfluoroundecanoic acid (PFUnDA)	µg/kg	1	<1	<1	-	<1	<1	-	<1	<1	-	<1	<1	-
Perfluorododecanoic acid (PFDoDA)	µg/kg	2	<2	<2	-	<2	<2	-	<2	<2	-	<2	<2	-
Perfluorotridecanoic acid (PFTrDA)	µg/kg	2	<2	<2	-	<2	<2	-	<2	<2	-	<2	<2	-
Perfluorotetradecanoic acid (PFTeDA)	µg/kg	2	<2	<2	-	<2	<2	-	<2	<2	-	<2	<2	-
Perfluorooctane sulfonamide (FOSA)	µg/kg	5	<5	<5	-	<5	<5	-	<5	<5	-	<5	<5	-
N-Methyl perfluorooctane sulfonamide (MeFOSA)	µg/kg	5	<5	<5	-	<5	<5	-	<5	<5	-	<5	<5	-
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	µg/kg	2	<2	<2	-	<2	<2	-	<2	<2	-	<2	<2	-
N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	µg/kg	2	<2	<2	-	<2	<2	-	<2	<2	-	<2	<2	-
N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	µg/kg	2	<2	<2	-	<2	<2	-	<2	<2	-	<2	<2	-
N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	µg/kg	1	<1	<1	-	<1	<1	-	<1	<1	-	<1	<1	-
N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	µg/kg	1	<1	<1	-	<1	<1	-	<1	<1	-	<1	<1	-
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	µg/kg	2	<2	<2	-	<2	<2	-	<2	<2	-	<2	<2	-
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	µg/kg	2	<2	<2	-	<2	<2	-	<2	<2	-	<2	<2	-
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	µg/kg	2	<2	<2	-	<2	<2	-	<2	<2	-	<2	<2	-
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	µg/kg	2	<2	<2	-	<2	<2	-	<2	<2	-	<2	<2	-
Sum of PFAS	µg/kg	1	<1	<1	-	<1	<1	-	<1	<1	-	<1	<1	-
Sum of PFHxS and PFOS	µg/kg	1	<1	<1	-	<1	<1	-	<1	<1	-	<1	<1	-

Callide Power Station •105

TRIPLICATES

Triplicate samples (collected at a rate of one every ten primary samples) were collected to assess any lab biases. Relative percent differences (RPD) were used to qualify quality control efforts. The triplicates were analysed by Eurofins.

The results of the triplicates analysis indicate that all RPDs were below the measurement quality objective (MQO) of \leq 50% (Table 5-6).

Table 5-6 Triplicate tissue analysis QA/QC results.

Anelia066200720bakan0110 </th <th>Analyte</th> <th>AB1 Yellowbelly</th> <th>Triplicate</th> <th>RPD (%)</th> <th>AB1 Hyrtlii</th> <th>Triplicate</th> <th>RPD (%)</th>	Analyte	AB1 Yellowbelly	Triplicate	RPD (%)	AB1 Hyrtlii	Triplicate	RPD (%)
BandAndAndAndAndAndAndAndAndBromAnd							
BornSignedSignedSignedSignedSignedSignedChromanConstraintConstraintSignedSign							
Chomian600610 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
Coper1351.0				-			-
ModemanNoteSelect				-			-
Selenin94949492929494Stontiur50610<				-	0.3		-
SymmetryNormal (1000)Normal 	Molybdenum	<0.05	< 5	-	<0.05	< 5	-
Innum6016016.0	Selenium	0.44	< 2	-	0.22	< 2	-
Variation6.56.10 <t< td=""><td>Strontium</td><td>0.5</td><td>< 10</td><td>-</td><td>0.8</td><td>< 10</td><td>-</td></t<>	Strontium	0.5	< 10	-	0.8	< 10	-
Zinc10.18.18.11.41.01.01.011.11.21.21.pertions(acid(2):ETSA)2233	Uranium	<0.01	< 10	-	<0.01	< 10	-
1H12B2Hperfluordecanesuffoncad(02.ETSA)2222331H14B24.perfluordocanesuffoncad(02.ETSA)22225331H14.B24.perfluordocanesuffoncad(62.ETSA)222210233Perfluordocanesuffoncad(62.ETSA)222223333Perfluordocanesuffoncad(0FDA)23233<	Vanadium	<0.5	< 10	-	<0.5	< 10	-
1H1H2H2perfluorodoecanesulfonic acid (10:2 FTSA)2232511H1H2H2perfluorodoecanesulfonic acid (2: FTSA)221021011<	Zinc	10.1	7.8	26	12.4	10	21
1H.1.2.1.perfluorohexanesuffonic acid (2 FTSA)22322333 <td>1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA)</td> <td><2</td> <td>< 5</td> <td>-</td> <td><2</td> <td>< 5</td> <td>-</td>	1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA)	<2	< 5	-	<2	< 5	-
H.H.2.P.perfluorodanesulfonk cade(62.FTSA)end<endendendendendendendendendendendendendendendendendendend <t< td=""><td>1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA)</td><td><2</td><td>< 5</td><td>-</td><td><2</td><td>< 5</td><td>-</td></t<>	1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA)	<2	< 5	-	<2	< 5	-
Perluorobutancic di(PEBA)Seame <td>1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA)</td> <td><2</td> <td>< 5</td> <td>-</td> <td><2</td> <td>< 5</td> <td>-</td>	1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA)	<2	< 5	-	<2	< 5	-
Perfluordecancia cd (PFDA)<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1 </td <td>1H.1H.2H.2H-perfluorooctanesulfonic acid(6:2 FTSA)</td> <td><2</td> <td>< 10</td> <td>-</td> <td><2</td> <td>< 10</td> <td>-</td>	1H.1H.2H.2H-perfluorooctanesulfonic acid(6:2 FTSA)	<2	< 10	-	<2	< 10	-
Perfluor Aperluor Ap	Perfluorobutanoic acid (PFBA)	<5	< 5	-	<5	< 5	-
Perfluorohepanoi cod (PFHpA)<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1	Perfluorodecanoic acid (PFDA)	<1	< 5	-	<1	< 5	-
Perfluorabe Andread (PFNA)Andread Andread Andread (PFNA)Andread Andread Andread (PFNA)Andread Andread Andread (PFNA)Andread Andread Andread (PFNA)Andread Andread (PFNA)Andread Andread (PFNA)Andread (Perfluorododecanoic acid (PFDoDA)	<2	< 5	-	<2	< 5	-
Perflurononanoi: QFDAQSignamSign	Perfluoroheptanoic acid (PFHpA)	<1	< 5	-	<1	< 5	-
Perfluoroda (PFOA)And the second of the second	Perfluorohexanoic acid (PFHxA)	<1	< 5	-	<1	< 5	-
Perfluoropentancia (PFPeA)	Perfluorononanoic acid (PFNA)	<1	< 5	-	<1	< 5	-
Perfluoroter def CPF DASecond and the control of the con	Perfluorooctanoic acid (PFOA)	<1	< 5	-	<1	< 5	-
PerfluorotetradeCAPTEDAN-2-5-2-5-5-1PerfluorotetradeCAPTEDAN-2<	Perfluoropentanoic acid (PFPeA)	<2	< 5	-	<2	< 5	-
Perfluorotic def (PFTrDA)-2 <td></td> <td><2</td> <td>< 5</td> <td>-</td> <td><2</td> <td>< 5</td> <td>-</td>		<2	< 5	-	<2	< 5	-
Perfluoroundecanoic acid (PFUnDA) <1			< 5	-		< 5	-
				-			-
	2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol(N-EtFOSE)	<2	< 5	-	<2	< 5	-

www.hydrobiology.biz

Analyte	AB1 Yellowbelly	Triplicate	RPD (%)	AB1 Hyrtlii	Triplicate	RPD (%)
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol(N-MeFOSE)	<2	< 5	-	<2	< 5	-
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	<2	< 5	-	<2	< 5	-
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	<1	< 10	-	<1	< 10	-
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	<5	< 5	-	<5	< 5	-
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	<1	< 10	-	<1	< 10	-
Perfluorooctane sulfonamide (FOSA)	<5	< 5	-	<5	< 5	-
Perfluorobutanesulfonic acid (PFBS)	<1	< 5	-	<1	< 5	-
Perfluorodecanesulfonic acid (PFDS)	<2	< 5	-	<2	< 5	-
Perfluoroheptanesulfonic acid (PFHpS)	<1	< 5	-	<1	< 5	-
Perfluorohexanesulfonic acid (PFHxS)	<1	< 5	-	<1	< 5	-
Perfluorooctanesulfonic acid (PFOS)	<1	< 5	-	<1	< 5	-
Perfluoropentanesulfonic acid (PFPeS)	<1	< 5	-	<1	< 5	-
Sum (PFHxS + PFOS)*	<1	< 5	-	<1	< 5	-
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	<1	< 5	-	<1	< 5	-

Callide Power Station •108

METHOD BLANK

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination.

All analytes in the method blank samples were below detection indicating that there was no laboratory contamination.

LABORATORY CONTROL SAMPLE

The Laboratory Control Sample refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix.

All laboratory control samples were within acceptable limits (70-130% recovery).

MATRIX SPIKES

A matrix spike refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries.

All matrix spike recoveries were within the acceptable limits (70-130%).

RINSATES

All analytes were below detectable levels within rinsate samples and within the dilute Aqui-s sample, indicating no contamination from sampling equipment or chemicals used in fish anesthetisation (Table 5-7).

Table 5-7 Rinsate and dilute Aqui-s QA/QC analysis results.

Analyte	Units	LOR	Rinsate 1 (30/01/2023)	Rinsate 2 (31/01/2023)	Rinsate 3 (1/02/2023)	Rinsate 4 (2/02/2023)	Rinsate 5 (3/02/2023)	Dilute Aqui-s
Arsenic	mg/L	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Barium	mg/L	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	mg/L	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Copper	mg/L	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Molybdenum	mg/L	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Selenium	mg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Strontium	mg/L	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Uranium	mg/L	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Vanadium	mg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Zinc	mg/L	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Boron	mg/L	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Perfluorobutane sulfonic acid (PFBS)	µg/L	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluoropentane sulfonic acid (PFPeS)	µg/L	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluorohexane sulfonic acid (PFHxS)	µg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Perfluoroheptane sulfonic acid (PFHpS)	µg/L	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluorooctane sulfonic acid (PFOS)	µg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Perfluorodecane sulfonic acid (PFDS)	µg/L	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluorobutanoic acid (PFBA)	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluoropentanoic acid (PFPeA)	µg/L	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluorohexanoic acid (PFHxA)	µg/L	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluoroheptanoic acid (PFHpA)	µg/L	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluorooctanoic acid (PFOA)	µg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Perfluorononanoic acid (PFNA)	µg/L	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluorodecanoic acid (PFDA)	µg/L	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluoroundecanoic acid (PFUnDA)	µg/L	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluorododecanoic acid (PFDoDA)	µg/L	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluorotridecanoic acid (PFTrDA)	µg/L	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02

Analyte	Units	LOR	Rinsate 1 (30/01/2023)	Rinsate 2 (31/01/2023)	Rinsate 3 (1/02/2023)	Rinsate 4 (2/02/2023)	Rinsate 5 (3/02/2023)	Dilute Aqui-s
Perfluorotetradecanoic acid (PFTeDA)	µg/L	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Perfluorooctane sulfonamide (FOSA)	µg/L	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
N-Methyl perfluorooctane sulfonamide (MeFOSA)	µg/L	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	µg/L	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	µg/L	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	µg/L	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	µg/L	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	µg/L	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	µg/L	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	µg/L	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	µg/L	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	µg/L	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Sum of PFAS	µg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Sum of PFHxS and PFOS	µg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Sum of PFAS (WA DER List)	µg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01

APPENDIX C. FIELD DATASHEETS

-1	Site	Site number 2222 2	2, 2, Site name				
а. 1.	Wat		Collector 1000V	V 12042 102. 7A Source	Tembury	The Hydrobiology	ې ک
	Date	e 20/1/0	Project code		[rainbon	, J-	
··.				ist Brusser (sales puch	Assw/	achuni -	
	#	Species	Stats 1 2 3 4	4 5 6 7 8 9 10	11 12 13 14	17 18 19 20 20 20 20 20 20 20 20 20 20 20 20 20	turio
		7 I	(mm)				rouit
		FORTAMININ					
			weight (g) / 10.25 8.85 6.45				
		1 and	Total length (mm)	424272555546538			Γ
÷	2	molena	Fork length (mm)				
			weight (g)	186 130 24 32 140			
		7	Total length (mm) \$5 72 (01 10	76 68 73 86 42	64 97 175 110 200 1801113 80	2 0	
	m	Low -					3
		Drow .	weight (g) \mathcal{U} 2 8 5	8426KB	10 52 14 31 -7326		
		Non C	Total length (mm) 82 10 52 6	102 0 1			
	4	an wei	```				
		chunch	weight (g) 6 13 6 6	6 16 12 22 m			
		1 - 041	Total length (mm) jubuuily				
	ம	r Sn	Fork length (mm) 1 ddull / tec	1 war			
			weight (g)				
		CLED Y	1 320 200 125	UP HO			
	9			,			
		C	weight (g) (489, 92, 140, 11	81.3			
		Mark M	Total length (mm) (<i>o</i> [36 65				T
	~		Fork length (mm)				
		A A was	45				
	(Ely-sected,	Total length (mm) 16 26 32 2	r 68	2		
	~	- With Lood	Fork length (mm)				
		manner	weight (g)	t			
			Total length (mm)				
	ŋ		Fork length (mm)				
			weight (g)				-1.2.
		Nord chaw	Total length (mm) 4927				
	10		Fork length (mm) Every to contrastic				
]		weight (g) -4 C 1 2				
]

.

Ì

•

Markendres Arte Arte Arte Arte Arte Date Bilder Collector Collector Collector Arte First First <th></th> <th></th> <th></th> <th>0</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>•</th> <th></th> <th>)(</th> <th>ø</th> <th></th>				0						•)(ø	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	 S						T			tet	No No	± X	ydrobic	logy
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		rcourse		OL			(-				2	>		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				code			<u>-</u> (2 des		Son (A.	·		
1 K-MK Total length (mm) [] Juncticule 2 Reduction Fork length (mm) [] S 45 52 30 31 31 27 3 Macurk Total length (mm) [] S 45 20 20 14 16 3 Macurk Total length (mm) [] S 47 20 20 14 16 3 Macurk Total length (mm) [] S 41 2 16 10				6		2	9 6	1	-	15	-	18	-	Count
$ \begin{bmatrix} 1 & FceyFe \\ FceyFe \\ TeachEe \\$	1		-			•	5		-)	+	2	+	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	17.00		Total length (mm)	Jurente										
2 Redduru Touleitit(ii) 3 Touli telefit (min) 57 47 32 31 21 3 Jurudu Fork tength (min) 57 47 32 32 31 21 3 Jurudu Fork tength (min) 57 47 32 32 31 21 4 Routudu Fork tength (min) 120 60 70 20 20 10 5 Routudu Fork tength (min) 20 10 10 10 10 6 Routudu 20 10 10 10 10 7 weight (g) 10 10 10 10 7 Routudu 10 10 10 10 8 Routudu 10 10 10 10 10 Fork tength (min) 10 10 10 10 7 Routudu (g) 10 10 10 10 8 Routule (g) 10 10 10 10 9 Routule (g) 10 10 10 10 10 Fork tength (min) 10 10 10 10 Fork tength (min)		10		-										
2 Reduction 57 42 42 32			~			. ×	1							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		110	-			213	7				_			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2	7		in a	-	1						à.	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				00	02	20	4				-			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	L	N.CW							1					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	- 6												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Superino		2										
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	-A -	0 - F	th (mm)											
Methods weight (g) 2.0 1				and the second second	111 (1998) 1.24 (1998)		-							•
Indiametric		approved.	<u></u>				e.			-				
Fork length (mm) Fork length (mm)<		2	Total length (mm)											
weight (g) weight (g) weight (g) weight (g) weight (g) Total length (mm) Fork length (mm) Fork length (mm) Fork length (mm) Fork length (mm) Fork length (mm) Fork length (mm) Fork length (mm) Fork length (mm) Fork length (mm) Fork length (mm) Fork length (mm) Fork length (mm) Fork length (mm) Fork length (mm) Fork length (mm) Fork length (mm) Fork length (mm) Fork length (mm) Fork length (mm) Fork length (mm) Fork length (mm) Fork length (mm) Fork length (mm) Fork length (mm) Fork length (mm) Fork length (mm) Fork length (mm) Fork length (mm) Fork length (mm) Fork length (mm) Fork length (mm) Fork length (mm) Fork length (mm) Fork length (mm) Fork length (mm)		5	Fork length (mm)	5 										- 3
Totallength (mm) Totallength (mm) <thtttttttttttttttttttttttttttt< td=""><td></td><td></td><td>weight (g)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thtttttttttttttttttttttttttttt<>			weight (g)											
Fork length (mm) Eork length (mm)<	L		Total length (mm)							2				
weight (g) weight (g) m		9	Fork length (mm)								-	an Like		
Total length (mm) Total length (mm) <thtotal (mm)<="" length="" th=""> Total length (mm)</thtotal>	-		weight (g)			la T						No.		
Fork length (mm) Fork length (mm)<			Total length (mm)				1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				Ser.		
weight (g) weight (g) Total length (mm) Total length (mm) Fork length (mm) Fork length (mm) Fork length (mm) Fork length (mm) Veight (g) No Veight (g) No Fork length (mm) No Veight (g) No <	k.	7	Fork length (mm)											
Total length (mm) Total length (mm) Fork length (mm) Fork length (mm) Neeight (g) Neeight (g) Total length (mm) Fork length (mm) Fork length (mm) For P Neeight (g) For P Neeight (g) For P Fork length (mm) For P Neeight (g) Fork length (mm) Fork length (mm) For P Fork length (g) For For	Aler 1		weight (g)			-		Ŷ						
Fork length (mm) Fork length (mm)<			Total length (mm)			-					10	S. HALL	C.C.	
weight (g) weight (g) Total length (mm) Total length (mm) Fork length (mm) Molecular (mm) Korisht (g) Molecular (mm) Total length (mm) Molecular (mm) Keight (g) Molecular (mm) Fork length (mm) Molecular (mm) Keight (g) Molecular (mm) Keight (g) Molecular (mm)		8	Fork length (mm)											
Total length (mm) Total length (mm) Fork length (mm) Fork length (mm) Neeight (g) Neeight (g) Verify length (mm) Neeight (g)			weight (g)								197 () 	Second State		5
Fork length (mm) Fork length (mm) weight (g) 0 Total length (mm) 0 Fork length (mm) 0 Keight (g) 0 Neight (g) 0 Fork length (mm) 0 Neight (g) 0	-	tant work of	Total length (mm)	-	3						_	Nell's	1	-
weight (g) weight (g) Total length (mm) Total length (mm) Fork length (mm) Image: Contract (contract	24. 10	6	Fork length (mm)								-			
Total length (mm) Total length (mm) Fork length (mm) Image: Contract of the second s			weight (g)								-	1 totay	1	All Inc.
Fork length (mm) Image: Constraint of the second			Total length (mm)						_	+				100 - 100
X: X	Y	10	Fork length (mm)								_	(i	actif a	
	1	0.0	weight (g)											

Stats Stats Total length (mm) Fork length (mm) weight (g) Total length (mm) weight (g) Total length (mm) Verk le	Ľ				Sita nama	ame														.,	2	-	-	
Multicontreal Control EACH LL LL LL 1 2 Specific Control 22 3 4 5 6 7 13 14 15 13 14 15 10 11 12 13 14 5 10 11 12 13 14 5 10 11 12 13 15 10 11 12 13 14 15 10	S	site nu	umber 9 AB2		211E 11		N		12	(-		,							v v	Ś.	Hydro	biolo	وې کې
Total Project cold # Species State 1 2 6 7 8 9 0 11 13 14 15	>	Vater	course source		Collec	tor	8			20	_	Q	N							•	?	4		₹ -0 1
# Species 1 2 3 4 5 6 7 8 9 10 11 13 14 15 18 19 20 0 11 13 14 15 14 15 14 15 14 15 16 17 18 19 20 0000 11 13 18 18 18 19 20 0000 11 13 18 18 19 20 0000 11 13 18 19 20 10 11 13 18 10 11 13 18 10 11 12 13 14 15 10 11 11 11 11 11 11 12 13 15 12 13 15 15 16 17 17 17 11 11 11 11 13 16 10 11 12 13 16 16 16 16<		Date	20/1/2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Projec	ct code																14		-
# Statelies State 1 2 3 4 5 6 7 8 9 10 11 13 14 15<	<u> </u>	9			a	the for	basue															~		
1 Network Contraction Resolution			Species	Stats	1	2		4	ъ	9	7	∞		-							18	19	20	count
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	i.		Callawind 1	Total length (mm		2670	0																	
Nome Weight (g) P(A) (7004) P(A) P(ates Calcalidd	Fork length (mm)														-	2					_
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				weight (g)	5.6	201300							_							_				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	17	-	ma Sug	Total length (mm			675						-											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5		trough the	Fork length (mm)	-		1																	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1.20		Kreit	weight.(g)										P					24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	20	Dony blean	Total length (mm	1.000		1	S	150	1.1				6	2	57 01					2 lus	150		170
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5		Jewatalosa	Fork length (mm	(and see			<u>.</u>						-				* **		1	2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7		elebi	weight (g)					30	18	2	12		0	-					1		-	5	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Y	14	Fly Specked	Total length (mm		-1																		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(j	4	Hardyneadus	Fork length (mm	(1										1							ă
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	3-	Ŀ	Shere USW US CALUT	weight (g)																				
$ \begin{bmatrix} 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3$		1	Marth Municht	Total length (mr			1.4						4.1											
$ \left[\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1		Jossamia	Fork length (mm					1						1	8			1					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			aprion	weight (g)	20	2				•												8	8	14 . 1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-	Banded Gouther	Total length (mn					206	92	56		8											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	Amniataba	Fork length (2)m	-	1	2 m																	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			percoides	weight (g)	5	1	1125	- 20	2	14	3		34					1						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		~~~	Eel tail Calfred	Total length (mn	-			4	the c		alle	_	-	1										
$\frac{1}{12} \text{ velght}(g) \text{ (g) } (g)$			Tandances	Fork length (mm								1												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5.8		tandanus	weight (g)	0		7	242						F										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	í			Total length (mn		0	1.1.2																	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		100	4 prelections	Fork length (mm	(
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Feb 588	weight (g)		_	•				1													
Fork length (mm) 28 - K.ot Kar-Lisue 1 weight (g) 38 1 1 Total length (mm) 1 1 1 Fork length (mm) 1 1 1 weight (g) 1 1 1 1		I	2ed chin	Total length (mn															100 100 100	10				1
weight (g) 3% m m m Total length (mm) Total length (mm) m m m Fork length (mm) m m m m m weight (g) m m m m m m				Fork length (mm	~	-	Keol	7	seve								11						Ťų.	
Total length (mm) Total length (mm) Fork length (mm) Image: Constraint of the state of the sta				weight (g)	3	00																		
Fork length (mm) keight (g)		1ª		Total length (mn	c	1.									•									
		10		Fork length (mm		1									144									
	:			weight (g)												X.			1					

Nate more Nate more part Site name (Nate more part Si	Va ⁻				!																	1 mm
Berconse 345 5 6 7 8 9 10 11 13 14 15 16 17 Species Sate Transf 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Species Sate Sate Sate 5 6 7 8 9 10 11 13 13 15 16 17 Project code weight (g) 10 11 14 14 14 14 14 14 14 14 16 17 16 17 16 17 11 11 11 11 11 11 11 12 13 15 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 <t< th=""><th>Wat</th><th>2</th><th></th><th>ITE LIGH</th><th>e</th><th></th><th></th><th></th><th></th><th></th><th>2</th><th>1</th><th>111</th><th></th><th></th><th>1 1 1</th><th>- / /</th><th>• •</th><th></th><th>Hyard</th><th>biolo</th><th>^{gy}</th></t<>	Wat	2		ITE LIGH	e						2	1	111			1 1 1	- / /	• •		Hyard	biolo	^{gy}
Alt Alt <th></th> <th>tercourse</th> <th>0</th> <th>collector</th> <th>2</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>*</th> <th>*</th> <th>K-</th> <th>100</th> <th>JASH</th> <th>abel</th> <th>NC</th> <th>led 1</th> <th></th> <th>XC</th> <th>Ŋ</th> <th></th>		tercourse	0	collector	2						*	*	K-	100	JASH	abel	NC	led 1		XC	Ŋ	
Species Stats 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Period Total length (mm) 1 2 3 4 5 6 7 8 9 10 11 12 13 13 15 16 17 Period Total length (mm) 11 12 13 14 11 12 13 14 15 16 17 12 12 13 13 13 13 13 14 14 14 14 14 14 14 11 12 13 14 14 16 16 16 16 16 16 16 16 16 <th>Dat</th> <th>31/2/</th> <th>e1</th> <th>roject c</th> <th>:ode</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>17</th> <th>T</th> <th>11 3</th> <th>7</th> <th>1</th> <th>7</th> <th>. \</th> <th></th> <th></th> <th></th> <th></th> <th></th>	Dat	31/2/	e1	roject c	:ode						17	T	11 3	7	1	7	. \					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						P					K	XX	X	J.	10	-V 1.14	2.00					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	#	Species	Stats	Ч	2	m	4			∞	6	10	11						18	19	20	count
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Same	Total length (mm)	0	32																4	
Extra Agree weight (g) (C (C <th>Ч</th> <th></th> <th>Fork length (mm)</th> <th></th>	Ч		Fork length (mm)																			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Earred opurant	weight (g)	2	0																	
Frequencies Fork length (mm) 11 M_{model} 78 72 44 117 110 Rent M Total length (mm) $CG(4)$ 78 72 78 72 72 44 112 112 Rent M Fork length (mm) $CG(4)$ 72 124 102 124 102 124 102 124 112 1111 1122 112 112 <t< th=""><th></th><th>2-Winny Color</th><th>Total length (mm)</th><th></th><th>111-111</th><th>aduct</th><th>they</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>		2-Winny Color	Total length (mm)		111-111	aduct	they															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2		Fork length (mm)			July	enl	0	-													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		tregges	weight (g)				6 · .	ar.		N.												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Print Al	Total length (mm)	1001	47	2 al	19 6	57	1 88		0	98	80	-	351	726	1	2	_	71	34	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ſ	Juni Uni	Fork length (mm)					Y							10							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	growth	weight (g)	24	0	5	20	10	210	070		20	0		00	10	5	2112	2	120	C	
χ Fork length (mm)CCCCweight (g)TCotal length (mm) \mathcal{U} \mathcal{G} \mathcal{S} \mathcal{S} \mathcal{S} \mathcal{L} \mathcal{U} Fork length (mm) \mathcal{U} \mathcal{D} \mathcal{S} \mathcal{S} \mathcal{S} \mathcal{S} \mathcal{L} \mathcal{U} \mathcal{U} \mathcal{U} \mathcal{U} \mathcal{U} \mathcal{D} \mathcal{D} \mathcal{D} \mathcal{D} \mathcal{D} \mathcal{D} \mathcal{D} \mathcal{U} \mathcal{U} \mathcal{U} \mathcal{U} \mathcal{D} \mathcal{D} \mathcal{D} \mathcal{D} \mathcal{D} \mathcal{D} \mathcal{U} \mathcal{U} \mathcal{U} \mathcal{D} \mathcal{U} \mathcal{D} \mathcal{D} \mathcal{D} \mathcal{D} \mathcal{D} \mathcal{U} \mathcal{U} \mathcal{U} \mathcal{U} \mathcal{D} \mathcal{D} \mathcal{D} \mathcal{D} \mathcal{D} \mathcal{D} \mathcal{U} \mathcal{U} \mathcal{U} \mathcal{U} \mathcal{D} \mathcal{D} \mathcal{D} \mathcal{D} \mathcal{U}			Total length (mm)	26 6	3 the	376	591	9			1.00		-)	
#weight (g) Z S G G G P Total length (mm) GL SZ SZ LZ DL P Fork length (mm) GL SZ ZZ ZZ DL M M ZZ ZZ ZZ ZZ DL M M ZZ ZZ ZZ ZZ DL M M ZZ ZZ ZZ ZZ ZZ M M ZZ ZZ	4	X ANDONS X	Fork length (mm)			N																
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	*	weight (g)	2	S	0	0	0	1							+	-					
U_{VUV} Fork length (mm) H Z <th>1.00</th> <th>, Y# G VU</th> <th>Total length (mm)</th> <th>Ct.</th> <th>65 C</th> <th>220</th> <th>50</th> <th>E</th> <th>12</th> <th></th> <th></th> <th></th> <th>-</th> <th></th> <th></th> <th>-</th> <th>-</th> <th></th> <th></th> <th></th> <th></th> <th></th>	1.00	, Y# G VU	Total length (mm)	Ct.	65 C	220	50	E	12				-			-	-					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	S		Fork length (mm)															-				
HurthurtTotal length (mm) 56 1 1 1 Fork length (mm) 50 1 1 1 1 Fork length (mm) 220 1 1 1 1 HurturFork length (mm) 220 1 1 1 Fork length (mm) 220 1 1 1 1 Weight (g) 58 1 21 23 21 24 Weight (g) 1 1 1 1 1 1 24 Marture Weight (g) 1 1 1 20 21 23 21 24 Marture Weight (g) 1 1 1 1 1 1 1 24 1 Marture Weight (g) 1 1 1 20 21 1 1 24 1 Marture Weight (g) 1 1 1 1 1 1 1 1 1 1 Marture Weight (g) 1 <		enviry	weight (g)	F	2	5	2	0	5									-	_			
$\chi \times \chi \times \chi$ Fork length (mm) Γ <		V I F TT	Total length (mm)	26										$\left \right $			-	-				
XXXXweight (g) H </th <th>9</th> <th>Transmout .</th> <th>Fork length (mm)</th> <th></th> <th></th> <th>Section 2</th> <th></th>	9	Transmout .	Fork length (mm)			Section 2																
HurthTotal length (mm)22011Fork length (mm)Kork length (mm)Kork length (mm)Kork length (mm)Kork length (mm)Kork length (mm)Weight (g)Total length (mm)ZoZoKork length (mm)Kork length (mm)Kork length (mm)Kork length (mm)Weight (g)Total length (mm)ZoZoZoKork length (mm)Kork length (mm)Cork length		XXXX	weight (g)	7		20 X.	3	-						-								_
TypumFork length (mm)SNLweight (g)SSSLSLweight (g)Total length (mm)ZZZZZ $X \times X$ Weight (g)I/LL/LSZZ $X \times X$ weight (g)I/LL/LZZZ $X \times X$ weight (g)I/LL/LZZZ $X \times X$ Verse bodyZZZZZ $X \times X$ ZZZZZZ $X \times X$ ZZZZZZ $X \times X$ ZZZZ<			Total length (mm)	220					3								-					
weight (g)SS $Federuw$ Total length (mm)2636 KS 2728212422 $\#$ weight (g)1/L Hn 522728212412 $mainveight (g)1/LHn522716162412mainTotal length (mm)2021nnnnnnmainmain2021nnnnnnnmainmain2021nnnnnnnmainmain2021nnnnnnnmainmain2021nnnnnnnnmainmain2021nnnnnnnnmainmain2021nn$	2	Theme	Fork length (mm)	7					1 K	L												
Focketww Total length (mm) 26 27 28 21 34 22 21 34 22 21 34 22 22 21 34 22 21 34 22 21 21 21 21 21 21 22 21 <		1. 1. 18 M.	weight (g)	24			-	1	C				à.		-			-				
\cancel{x} Fork length (mm) \cancel{x} <th></th> <th>Pedalani I</th> <th>Total length (mm)</th> <th>. 0</th> <th>79, 1</th> <th>182</th> <th>7 2</th> <th>-</th> <th>TER</th> <th>20</th> <th>D</th> <th>10</th> <th></th> <th></th> <th></th> <th>-</th> <th>╞</th> <th>9.</th> <th></th> <th></th> <th></th> <th></th>		Pedalani I	Total length (mm)	. 0	79, 1	182	7 2	-	TER	20	D	10				-	╞	9.				
weight (g) ILL LC F2L Z.7 Co ILL ILO ILO ILL ILO IL	∞	Mana Xa	Fork length (mm)	-	2		7	1	()								-					
Total length (mm) 20 Fork length (mm) 20 Safe boso weight (g) Safe boso Total length (mm) Safe boso Fork length (mm)		**	weight (g)		-	8	26	21 0	011 ,		N					-	1					
Safe to Sale Jed Fork length (mm) Safe to Sa Jed Fork length (mm) Fork length (mm) Municipit (c)		rission of the	Total length (mm)		12		1								-	+	-	_				
Sale hos of lead length (mm) 2 Fork length (mm) 2 moint (x)	6		Fork length (mm)						-							+			-			
Solution Total length (mm) C Obsolved Fork length (mm)			weight (g)	1											+	+						
Obsol Jed Fork length (mm)		Salatoon 1	Total length (mm)	5	0		-										-					
		observed	Fork length (mm)			13								-	-	-	-					
	-		weight (g)													-	-					

ð		-		:																(
1	Site		ALL	site name	lame															Ć	NH NO	& Hudrohiology	No ol	
ha	Wate	Watercourse A55		Collector	ctor															X			NU BY	
And	Date	31/2/2	23	Proje	Project code	-															,			
11-20-		Smell 1- wing	a sufe									,												
i.	#	Species	o v U Stats	1	2	ŝ	4	S	9	7	8	6	10	11	12	13	14	15 1	16 1	17 1	18 19	00 0	-	t
d		L'rul	Total length (mm)	#		A.	July									-	-		-	-	-		conut	
	,		Fork length (mm)	111		June	. Will	~												-	-	-		
	1	tarte	weight (g)	-					1										-					er.
		prove A	Total length (mm)	2// (1		115 104	201 +	505	53	20	(07	22	06	47	tu	796	48					+	-	T
	2	Dave	Fork length (mm)														1				-		T	4
ciin-	12	Rumer	weight (g)	2	20 24	H 18	0	1	2	0)	20	0	14	2	0	0	2					-	Т	
		E	Total length (mm)	102	2		1									-			-	-	+	+	-	Γ
	m	Dowy	Fork length (mm)													d							1	1
		bream	weight (g)	2	6													-		+				
		Moud	Total length (mm)	1 4	056	0												16				-	_	
	4		Fork length (mm)	- (i bi						-	-			
	1	aunther	weight (g)	2-	210	1								4						-	_			
			Total length (mm)	1 29	5 78	2 30	010	2	00	1	202	00	22	27	50	1	26 7	0		ہ ک	0	101		Τ
	ъ Л	the spearer	Fork length (mm)								_	_	-	1	1	-	-	0	-	7	+	1	0	
		hardyhear	weight (g)	t	2.	0	-	2	2	2	N	2	F	t	2	0	0	2		0	5	1		
		NV States	Total length (mm)	()					12)			1			5		
	9	Collog and and	Fork length (mm)																		-			
		A 0	weight (g)																-		-	-		
	1	1-1-6	Total length (mm)	131	+ 173	52	36	22	24	52	32	32	29	29							-			
	,	fed oran	Fork length (mm)			-				< -														
			weight (g)	20	500	t	-46	020	3	0	36	38	to	20									Τ	
		Sleene	Total length (mm)	14(0	12										20		-			-	_		Τ
	∞	N-1-	Fork length (mm)																	-			1	
		CON	weight (g)		1		No.			10	1			1				-		-			-	
			Total length (mm)	()		1							Γ					-		-	_	-		Т
	6		Fork length (mm)		1											1		-						_
			weight (g)									T									-		-	
			Total length (mm)	()	1000			a beneral									-	-	+	+	-			Т
- ii	10		Fork length (mm)			i and													-		_		-	
1.		Market I Andrews	weight (g)		12												-			-	-	2		Con a
12	No.																-		_	-	_	_		7
i	1		N.		8																			

C (14)		Cito pamo	044	_						**	1052	Aken	i E	tussue	(Lel	Labelled a	8		HAN	rohio	
4		Collector	ctor	_						6	07 0	0	(0.0	7-4.0.12	Of WESS	1 50	X		a to division shassing the induced	1053
31/11	22	Proje	Project code	N.						J ,		1	1.	3		0	(r		
))									X	XXX TUSM O to	F	45WC	9	f9	ALS	3te		2 -	ŀ	
Species	Stats		2	°.	4	5	9	7	∞	6	10	11	12	13	14	15	16	17 1	18 -19	9 20	count
2	Total length (mm)	1++ (1	+ 11 6	edu	R													-	_		
man a	Fork length (mm)	1	411	LUNCM	Re												-	+		-	
\$	weight (g)	/																	-	_	_
" - Niked	Total length (mm)) (ad	whe												-		_	-	
si	Fork length (mm)																-		_		
when	weight (g)							14						5					_		
	Total length (mm)	1) 370	. 0		-	L.		1													
0	Fork length (mm)	-				5												_			_
fur	weight (g)	630	0																		
Snewhud	Total length (mm)		677	89	20	15	35	36	55	15	11	36	(7)	. 82	22	1 75	781	2 2	34 2	N 9	2442
*	-									2 2			8 I								+52
- Charles		0	2 2	-	2	C	2	2	2	2	L	2 .	t	2	2	4	t	4	1	24	+200
	Total length (mm)	1961 (1	6 22	105	79	93	120	127	126.	511	28	65	1 5	221	971	10	153 (40			4400
Barnere	Fork length (mm)		5		~	-		(ſ	1.	2							_			
chunder	weight (g)	2	210	E	104	0	23	R	-	れて	0)	0	0	50	30	0	149	57			1
XX			6 168	2	22	52	02	66	29	16	54	50	rt8	96	21	201	23 2	3231	0	72(21+12
trunker ~	Fork length (mm)					-					-)		ł	T		()		+50
intro.	weight (g)	0	5	7	N	2	6	0	4	2	t	t	Z	2	2	2		7	2	0	4 100
June	Total length (mm)	2 (1	J VS	8	5	67	pot	5	42	42	19	(1)	10						_		-
When I	Fork length (mm)	_						5		7							-	-		_	
anne Co	weight (g)	2	T	0,	0	0)	9	5	2	0	0	0	t				-		_	_	-
· 1 1.	Total length (mm)		5	20	5	5	5	S	5	Ś	S	0	Q	10	01	0	91	Q	0	2	0
MANDA TON MAN	Fork length (mm)	(-				5		-	_
大米米	weight (g)	1		1	New York	-	1	, (1	1	~	-		6	_	_			_	_	
レーマストレン	Total length (mm)	42 (1	0 1CF	4									2	2			_	_	-	-	-
NUM	Fork length (mm)	-																			
man /	weight (g)	¢1 *	0								_						-	-	-	-	_
	Total length (mm)	Ê													Ĩ				_	_	
est	Fork length (mm)	-								1							-		2	_	-
	weight (g)			_		2														_	-

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Site r	Site number	5	Site name	me														11	2			
Byl (12:5) Repert code Species sats 1 2 3 4 5 6 7 8 9 10 11 13 14 15 15 13 14 15 15 13 14 15 15 13 14 15 15 13 14 15 15 13 14 15 15 13 14 15 15 13 14 15 15 13 14 15 15 13 14 15 15 13 14 15 15 13 14 15 15 14 15 14 15 14 15 14 15 15 15 14 15 16 17 15 <td< th=""><th>Wate</th><th>ercourse AR2</th><th></th><th>collect</th><th>or</th><th></th><th></th><th></th><th></th><th></th><th></th><th>×</th><th>+ Ordet</th><th>4</th><th>1-1-1</th><th>6140</th><th>(2)</th><th>1</th><th>•/\</th><th>\$</th><th>lydro</th><th>biolo</th><th>ŝ</th></td<>	Wate	ercourse AR2		collect	or							×	+ Ordet	4	1-1-1	6140	(2)	1	•/\	\$	lydro	biolo	ŝ
XX <i>k k k k k k k k k k</i>	Date		F P	roject	t code						1		5	Ś	Ą	3	5	0	•	,			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						5	No.				14	XX	The	A	Ert	in							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	#	Species	Stats	1	2	3	4	5	9	7		6	10 1	1	2 1	3 14	-	16	17	18	10	-	+4100
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Total length (mm)	36	9-41	9.4	104	74			13			-	-	-	-		Ŧ	2	G		COUNT
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		0	Fork length (mm)		-	4																	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		perm.	weight (g)	N	5	0	0)	2				-											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		H. J. Lead	Total length (mm)	171	28	17	CT1	9	34	1	/		~	2	-	-	12/12	2112	-	27	202	V	1100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	1 considered a	Fork length (mm)												-	-	Ť	}	-	//	0	Q	T 200
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5	X	weight (g)	0	2	N	2	0	0	0	0	0	1	1	0	C	0	C	0	1	0	0	3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1202542	Total length (mm)		12	20	M	21				21	-	10	0	100	12/	10	-	1	11	N	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	m	<i>S</i> .	Fork length (mm)	P.								1			0])	-	0			+ 200
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			weight (g)	2	2	2	2	2	2	2	t	2			2	0	С	V	0	2	2	0	- 14 - 14
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Lerta	Total length (mm)	ŧ	1	ada	5	14				7.+		K.		1	1))	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4	1010	Fork length (mm)	-	D	when	Z	1	*										12		1		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2	Tante	weight (g)		No.																		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		WE WW	Total length (mm)	0	12	29	96	1		110	60	-	1			11	767	TP.					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	S	al mult	Fork length (mm)	V				T					1		-	3	2	3					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	er!	www 0, 0	weight (g)	(0)	S	01	0)	10	0)	01	0	0	0	0 10	016	210	(// (()					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		A I	Total length (mm)	1		00		0	5	22	170	8					3						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	Lawer	Fork length (mm)			1																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	d,	opriver.	weight (g)	20		N	2	5			0	8						ĺ			-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	v		Total length (mm)		43												N. N.						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	Ledular	Fork length (mm)																				
Mutble Total length (mm) 5 5 1	in De		weight (g)	33																		Τ	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		- V V VU	Total length (mm)	5	S	1000																	
Weight (g) I	~	11 augosulun	Fork length (mm)	F	P																	Γ	
Total length (mm) Total length (mm) Fork length (mm) Fork length (mm) Neight (g) Molecular Total length (mm) Molecular Service (g) Molecular Fork length (mm) Molecular Total length (mm) Molecular Fork length (mm) Molecular Fork length (mm) Molecular Neight (g) Molecular Total length (mm) Molecular Fork length (mm) Molecular Neight (g) Molecular		* *	weight (g)	1)																		
Fork length (mm) Fork length (mm) Fork length (mm) Form (mm)			Total length (mm)	14				100							_								
weight (g) weight (g) Total length (mm) Total length (mm) Fork length (mm) Total length (mm) weight (g) Total length (mm)	б		Fork length (mm)	5	P		1.20				3												
Total length (mm) Total length (mm) Fork length (mm) End weight (g) End			weight (g)				Sec.			. Jour													
Fork length (mm) Image: Constraint of the second			Total length (mm)	19										3									
weight (g)	10		Fork length (mm)	TANK I					-	No.					3	•					¥.,		
	R		weight (g)	150																	T		14

N. C. Sta								N.	•											(
X	Site r	Site number		Site name	me					*			-			1	1		11/	18	Hvdro	& Hvdrobiology	۲ ²
2	Wate	Watercourse		Collector	or		9					D.	Tele Ser	MSSM	SULL	2			1	2			5
mul	Date	12/1	23	Projec	Project code								ć	2	Lit		_			×			
		1-min Kulle				ф., т.							/	1 to		Ser	they -		2		-		
	#	Species	Stats	7	2	m	4	5	Je la	7	∞	6	10/ 1	11 1	12 1	13 14	4 15	16	17	18	19	20	count
		17	Total length (mm)	147	1119	1 43	144	1681	(12)				/										
	Ч	mart	Fork length (mm)	<u>)</u>				1				~						-					1
	114		weight (g)	24	26	77	20	. 8	25										x				
			Total length (mm)	25	ad	with											-						3
	2	KIERE	Fork length (mm)		(λ			t.		ā.										_		
			weight (g)									de											
		-	Total length (mm)	0	M	Jul	~																
2	m	Sawshell	Fork length (mm)															*					No.
-		Court place	weight (g)											4									igat.
المناه		Large Seffe	Total length (mm)	F	729	26	E	(H)	42			/ =									4	91.2.5	J.
Sec.	4	+ we bod an	Fork length (mm)	2.			-							1.15			•						
	1 1	range the	weight (g)	0	-	2	Z	2	7		1										1	-	
		, ,	Total length (mm)	28	566	19:0	273	27	(IC)	62 6	901	05	5) (2	553	23	6 1	5 7	17	2 SC	7	Ś	34	57
	S	Kannoc W	Fork length (mm)	5	4]	2						1				2	
- Lik			weight (g) Xel	S'	F	Ø	5	2	0	5	01	21	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	22	2	7 -	TC	5	8	4	5	-	
		.)	Total length (mm)	17	1 told	- 50	020	077	721	1 9.0	570	63 5	526	116	87	ZZ	N t	764	-67	1.9.	89.	67	
	9	Y WINDOW A	Fork length (mm)	1			14	d		1	7			Service Contraction		5	2	A					1-27-
1			weight (g)	5	8	Q	9	2	S	10-	() ()	0	0	0.0	0	0	0	E.	F.	23	17.	F	+1
	-		Total length (mm)	M	t ad	when	~	100	1)	0.03		1	S.IV				_	1				
	7	12001	Fork length (mm)		3		1	24 . T. 1.	6 . M	14	1		1	10) 353	•	-	1		4				
J.a		- JANNU	weight (g) 🌕		1	in Sections		時間の	1.		2	11	なな	Se an	1.1	4	321			4	5 °		1 300
		~ mmm	Total length (mm)	-	1		10	100	1	AL.	ANT I	and the second	1	L'and	-	1350	1	14	0	2			
	8	truille	Fork length (mm)		allul	2				1			24								N.C.	19.5	1
			weight (g)		to the second		A. C.				i i				1					-			
	1	· · · · ·	Total length (mm)	150	5110	3207	63	101	61	147	1421	174 2	286 2	1902	60 17	51 20	146:15	21-1	2180	175	192	128	914
	15	At her their	Fork length (mm)		5	-	2			1			7		A.	The second second							11
Lie		0	weight (g)	24	-14	76	£	260	17	Core-	22 4	501	23/29	RIL TH	SCI III	C	034	734	658	ß	00	20	14
			Total length (mm)							and the second s	Ne		-	-	-	-							
Sec.	10		Fork length (mm)	3	64			14	100 C	A. C. Martin	「お湯		11 3	WE CO	Li	2.2	3						
		and the second and the second	weight (g)							Carl Martin Law	947 J.	477			/								

Site	Site number	Site	Site name						[((2			
Wati	Watercourse AC	Coll	Collector							-		ŗ	Ŧ				X	Ŧ L	/drobi	Aydrobiology	
Date	2/2/20		Project code						i X	test							•	,			
	Lover Sylt cont.						$ \rangle$]											•	
#	Species	Stats r	1	m	4	\ ۲ س	2	8	6	9	11	12	13	14	15	16	17	10	-	-	
	$C_{C_{min}} = \int d$	Total length (mm)///	132 196	$17l_{r}$	25	8415	0	106 10)			-							+	7 		count
~		Fork length (min 2 +			,		1	-		-							1				
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	weight (g)	09 05	1	15	201	$\left  \right $	1027													
		Total length (mm)	5 5	3	لى	+	F	test	 	-							1		-,		
2	1.101.1	Fork length (mm)		7			  )	 				 +						╀	-	- <b></b> -	
																-		+	-		_
•	# Gil 120hi	Total length (mm)	20 JU	138	ーズピ	11	12 <u>15</u> 4	<u>4 76</u>	5 0 1	177	11	120	92	0	1					-+-	5
m		Fork length (mm)		-	>	-		_		_					J	(			<u>3</u>   <u>80</u>	<u>.</u>	<u>Ş</u>
	stardness 15%	weight (g)	46	the sta	8	0	01122	0	5/1	22 6	20	5	2	ά	ľ	Ś	11 L 2	215 1	72 1.5		
		th (mm)	0 0	1	4 1 1 1			1	1					7	\ \		_			 	
4	Marronachin	<u>  </u>															-		-		
		weight (g)	2						 												
	-	th (mm)	2923	51	- 1-1-	72 8		82 66	0 76	2					İ				_		
<u>ں</u>	Kawhin	Fork length (mm)						1		<b>†</b>								+		-	
			4 2	7	(+-	4-17	5 5	5	t	t											
		T	209184	7101	137	+	12 12									-				-	
<u>.</u> 9	( ~ WWWW )	Fork length (mm)			→   		-										 			Τ	_
	-	weight (g)	4 48	88	1 2												 				
		Total length (mm) $f_2$	75				. 														
~	ANDOUG	Fork length (mm)								-										-	
		weight (g)																	 	r—	
	, <b>,</b>	Total length (mm) 2.	229 267	50	120246	-	141 130	0 154	12101	0210											
∞	T when	Fork length (mm)													<u>+</u>	 	-				,
	5	weight (g)	0190	20	9	100 2	0	02 20	( <b>`</b> -	52						+			 	7	·
		Total length (mm)													<u> </u>			 	+-		Τ
6		Fork length (mm)			•												 			7	,
		weight (g)														 			  .  .	<u></u>	
<u></u>		Total length (mm)	_													 			-	-	Τ
10		Fork length (mm)					 							u'				-	-	<b>Г</b>	
		weight (g)																	_	]	

1	1-		- W.						< ۲	t S	M	4 Z	K	L		(	- 11		δ ¹ ι Θ	44
	Site number	umber 🔶 🗸	81	Site name	10 10 10 10 10 10 10 10 10 10 10 10 10 1	*	en. v		K	τ		50	for la	- Juss		()	X H	Androbiology	ology	ai - 12
	Watercourse	course		Collector						) •						)(	,		5   ,	-
	Date	$\mathcal{V}_{z}$	200 10	Project code	8					12123	2	×	*	XX 20 test for tester	tort	Les.	thissu	2		
	12	X Munz.	where "							_					1	2				
	#	Species	Stats	1 2	3 , 4 ,	5	6 7	∞	6	10	11 1	12 13	3 14	15	16	17	18 1	19 20		count
in it		1	Total length (mm)		Adult	))							a _s				-	. Not		
		Freder	Fork length (mm)	2	Turcher	2					1.0	A Starter	Ð			- 1	<b>唐</b> -3		Π	
		, m	weight (g)		-							-		-				*		
X		Kit. L. LI	Total length (mm)	1) 34 30	1224	143 %	20 30	452 6	5	22	12	49	27.7	48	34	F	362	8	8	8
A.L.	7	Flarand merel	Fork length (mm)				-	-	1						-	_			+	t
1979	1	X	weight (g) 😽	22	2 2	0	2 20	2	4	2	2	1	2	2	2	N.	202	2	- 1	
1		Prod Avelland	Total length (mm)	1100 11S				981 7		A CARA	· ·								а 2	
	en en	10 in the	Fork length (mm)	×. (			N. ANA				A STATE								N. N	
	ur ur	rembard	weight (g)	220			How		3			and the second			A.C.			· ·	- 44-	
	-		Total length (mm)	1-1121 (1	Kent			1	14 14		5-					14		***	49	Sec.
	4	Hatter	Fork length (mm)		-			-	ą.,	e ·			•			1				
		C	weight (g)	11		1		×	- 5,3	1				Sec. 1		4	No.	×	. A.	
	ç		Total length (mm)	1) 2(0 +	tick	1		17	and the second s	10 m	14	199			4	3	-0	26		- AR
L.,	-0	fand on	Fork length (mm)	(	-		1		A States									100		
Danie	_		weight (g)	2	A CONTRACTOR	A Street A			-	- 17 P				-	1947	1	1	1		
in		mark - Sm	Total length (mm)	(H) SUD	A.			1		1989	1						A	a star	1	1
	9	No. 0	Fork length (mm)		6	j (						_		4				81	Т	Y
2		eel	weight (g)	Kot,		Sec. 1			and a second	10 m			100		-				-	K
		Lowy Rute	Total length (mm)	, vin ) 1 (r					200	ALC: NOT	Carl			1		11.1	うちょう		•	
	2		Fork length (mm)	1 JAnd			Q. 1				into.	GR		<b>N</b> .		19 19 10				्यम्ब; ;
		Freyth	weight (g)	2		A. Torres						5	24			-1		1		
		J-V-C	Total length (mm)	n) 230246		N	and and		1		12		and the second		and the second	Contractor of		Town of the second		1
	8	Q	Fork length (mm)	)	1	- / [†] 1	H	1			2			-			the second			r.
		brew)	weight (g)	150 120		1					A	5				27.2			Y	
			Total length (mm)	n) 166 129	97 122	1281	05 20	201 002	010	4			_				10	1	T	
	6	-pame/ler	Fork length (mm)			ĺ	ę						-	.82			+		T	
i.	and the contract of the contra	2	weight (g)	66 2C	05 71	0	02104	.0		A CAR		+	_	K	Ì		-		-	217
R.		1 1. 4.1 2	Total length (mm)	n) 52 90	414	846	38 3	314	R	3	21 12	シトレ	Tho H	x .	4	14	36	14 31	++ 1.	0
here	10	NXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Fork length (mm)	2 2 1	22	2	5	22	t	c)	2	1	2	N	2	J	J	11	T	7
Ē.	_		weight (g)	1								_	_	_		_	-	-	-	

Gover 1	المرمع		Elsin	1/2/2	2	0 đ			and the second se		
BIOLOGICAL RECORD	Site name: ${\cal ABS}$	A48				dy:		N. S.	A CONTRACTOR	and the second sec	
Seq # Op# Species Code F	Fish # Length (mm) Weight (g)	Weight (g)	Comments	DNA	Kept Seq #	Op# Species Code	Fish # Length (mm) Weight (a)	Weiaht (a)	Date / /2022 Comments	DNA	Kent
Bany orcens -	326	57		0	0 E1	muden	- 1665	50			0
0	Cept			0			26	202		0	0
	279	50		0	0		124	36		0	0
	\$280	280		0	0 4	-				0	0
	30t	320	Y	0	o 5					0	0
Q	275	29.0	,	0	o 6	Nove .	+264	30		0	0
3	252	128		0		abutedar				0	0
	164	9'th		0	0					0	0
	218	LT D		0	C. T.					c	c
D 20	100	Qon	( <b>a</b> )	0	0 E10	Harrie	1.92	-47		0	
1	295	180		0		Low	22	1			
2	312.	212		0	は時間		14	11		o c	
~	1205	270		0	0		20	11	/ /		
4	1 142	20		0			202	56	17 topt		
	146	100		0			Chard	21 -			
1 Ar	165	20		0	0			- Marine	/		
	1 24.5	100		0							
8	91:2	370		0						0 0	0
	661 4	14/20		C		D. 6.	10	6	r	2	b
D 30	152	20		0	0 E 20	1 AMMEN	671	A	5 Kept	0 0	0 0
	242	240		0			A CA	XIX		> <	0
2	212	1165		0	0 2		1.1.	2	)	0 0	0 0
	3.14-9.	EEO		0							
	011-	" de		0	0 4		A second s				b
	10	21×		0	0						
0	02	16		-	0					0	c
	20	-10	+17+10+	002 002	0 7	Spanner BA	152 CM	CIS		c	0
				0	0		101	10		0	
		-	1	0	<b>6</b>		0.51	610	1 (	c	
Core fin er	150	7600	1 test	0	-		721	215	V + Cort	0	c
2.4	000	5200		0	1		281	010		c	c
		4		0	0		1047	SAN .	/		
•			2	0	0 3		1/1/2 =	202		<b>)</b> (	
				0	0		20	1./1			
			-	0	0						
				0	9		656				
				Ö	2 0	Noll Nov	art.	1 100	+, -, -, -, -, -, -, -, -, -, -, -, -, -,	2	0
				0		CONTRACTOR AND	Laster 1	000	, day 1	0	0
	-		· · · ·	0	6					0	0
0 50			1	c						0	0

1. M

1

and the second s

000000
0 0
C
and
0 c
1
0 0
0
o o 7
1
0
00
0
0
c
0 0 9
0
0
0
0
0
0
0
0
Т
0.0
1
0
0
0
0
0 0 3
0
Comments DNA Kept Seq # Op# Species Code
Waterbody:

1240

Star Bar

14

¥. .

	Site number	Site name	
	Watercourse	Collector	Hydrobiology
		1/7/23 Project code	,
(~~)	eve sike (continuer)		
	# Species	Stats 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	10
	Ro. hor.	12832 D9 32 74 371 4000	-
1	1	Fork length (mm)	
1		weight (g) 2222777	
		Total length (mm) 48 4 /46 58 56 47 60 32 45 62 59 40 34 36 10	A tot
	2 (Jusspersh	(mm)	
	>	weight (g) 2224 (4 (4 2 4 2 6 4 4 2 2 3 3	
		Total length (mm) 36 A	
	3 (Jawaward) E	Fork length (mm)	
		weight (g) 2 2 2	
	1 4.	Total length (mm) [162 132 154 130 1446 - Fefe 136 130 136 13 7 7 5 128 135	12/171
	4 From		<u>_</u>
	)	weight (g) (0 1 5 4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	
		1 (67	
	5 porednewing	Fork length (mm)	
		weight (g) 20	
	grake-reit	Total length (mm)	
	6 rseephers.	Fork length (mm) Cheredonia expansion	
	Agur-Judy	weight (g)	
	Secur-dred	Total length (mm)	
	1 mile	h (mm)	
	2	weight (g)	
	1.945	Total length (mm) 25 29 31 28 31	
	8 Hards head	(mm)	
	5	weight (g)* ( 2 2 2 2 2	
	11	Total length (mm) 16 1 3 20 (9 2.0 2.1	
6	9 Myselutur	h (mm)	
	0	weight (g)	
		Total length (mm)	
(1	10	Fork length (mm)	
		weight (g)	
	-		

Rite currents     All currents       Value     Site current       Value     Site current       Value     Site current       Value     Site current       Part     Topic cost       Part     Sate       Part     Sate </th <th>L</th> <th></th> <th></th> <th>1000</th> <th>*</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Γ</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>((</th> <th>&gt;</th> <th></th> <th>1</th> <th></th>	L			1000	*						Γ								((	>		1	
Mount         Collector           Analysis         Satisfie         Sati	S	te number	0,	site na	me														,)(	S HY	drobi	0000	-
T2     Table     Froject.cole       Model     Stats     1     2     3     4     5     6     7     8     9     10     11     12     13     16     17     18     19     20       Model     Extension     5     5     7     8     9     10     11     12     13     14     15     14     15     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12     12	3	latercourse AB4	0	Collect	or	-th														>			
Market       Stats       1       2       3       4       5       6       7       8       9       10       11       12       13       14       15       16       17       18       19       20         Maywuk       East length (mm)       6       7       3       4       5       5       7       10       11       12       13       14       15       16       17       19       10         Maywuk       East length (mm)       7       2       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 </th <th></th> <th>2121</th> <th>~ N</th> <th>roject</th> <th>code</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th>1</th> <th></th>		2121	~ N	roject	code						-	1											
Tepeleis         Stats         1         2         3         4         5         6         7         8         9         10         11         12         13         14         15         16         17         18         29         20           Program         Foot length (mm)         E         Total length (mm)         E         Total length (mm)         E         Total length (mm)         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E		1									4	SPO -	ĩ									-	
Magnuk     Italieegh (am)     East (aght)     Italieegh (am)       Frieffic     East (aght)     A     A       East (aght)     East (aght)     A     A       East (aght)     East (aght)     A     A       East (aght)     East (aght)     East (aght)     East (aght)       East (aggt)     East (aght)	#	-	Stats	1	2	ю	4	-	9			16 (16)			13	14	15	16	17			-	count
Aburdia     Eack tength (finit)     1     2     1     1       Arrel Web     Total length (min)     2     3     1     1       Arrel Web     Eack tength (min)     2     3     1     1       Arrel Web     Eack tength (min)     2     3     1     1       Arrel Web     Eack tength (min)     7     2     1     1       Arrel Web     Eack tength (min)     7     2     1     1       Arrel Web     Eack tength (min)     7     2     1     1       Arrel Web     Eack tength (min)     7     1     1     1       Arrel Web     Eack tength (min)     1     1     1     1       Arrel Web     Eack tength (min)     1     1     1     1       Arrel Web     Eack tength (min)     1     1     1     1       Arrel Web     Eack tength (min)     1     1     1     1       Arrel Web     Eack tength (min)     1     1     1     1       Arrel Web     Eack tength (min)     1     1     1     1       Arrel Web     Eack tength (min)     1     1     1     1       Arrel Web     Eack tength (min)     1     1     1		10	Total length (mm)	-	65	14	92	0	5							1					_	-	<del>.</del>
Yetti Markov         weight (g)         AF         A         C2         A         A         C2         C2         A         A         C2         C2         A         A         C2         C2 <thc2< th="">         C2         C2</thc2<>			Fork length (mm)	1					7								*			-	_		
Full         Total length (mm)         2 A J MA         Total length (mm)         2 A J MA           Prive Registh (mm)         Total length (mm)         7 3 2 4 2 7 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			weight (g)	7	4	2	2	_	_		•	20		-								-	Τ
Frequencies       Fork length (mm)       Constrength (mm)       Cons			Total length (mm)	2	Xal	2 m								•							_		
Weight (g)         weight (g)           HM Soleth         Total length (mm)         TOtal length (mm)           vergint (g)         North (mg)         North (mg)           Vergint (g)         North (mg)         North (mg)           HM MM         Total length (mm)         North (mg)           Vergint (g)         North (mg)         North (mg)           HM MM         Total length (mm)         North (mg)           North (mg)         North (mg)         North (mg)           HM MM         Total length (mm)         North (mg)           Cost length (mm)         North (mg)         North (mg)           North (mg)         North (mg)         North (mg)	2	2	Fork length (mm)							V	+a.	_	_									Τ	
HWI Herry       Total length (mm)       7 / 3 / 6 / 2 / 3 / 6         Swell String       Total length (mm)       6 / 4 / 4 / 7         Swell String       Total length (mm)       6 / 4 / 4 / 7         HWI Herry       Total length (mm)       6 / 4 / 4 / 7         HWI Herry       Total length (mm)       6 / 4 / 4 / 7         HWI Herry       Total length (mm)       1 / 1 / 1 / 4 / 4 / 4         HWI Herry       Total length (mm)       1 / 1 / 1 / 4 / 4         Total length (mm)       1 / 1 / 1 / 4 / 4       1 / 1 / 1 / 4 / 4         HWI Herry       Total length (mm)       1 / 1 / 1 / 4 / 4         Total length (mm)       1 / 1 / 1 / 4 / 4       1 / 1 / 1 / 4 / 4         HWI Herry       Total length (mm)       1 / 1 / 1 / 1 / 4 / 4         HWI Herry       Total length (mm)       1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /			weight (g)	1				- (-	1	1	1						21						
HM New       Fork length (mm)       Fork length (mm)       Fork length (mm)       Fork length (mm)         Vew@nt.gs       Total length (mm)       A / Usc       A / Usc       A / Usc         PMM       Total length (mm)       A / Usc       A / Usc       A / Usc         PMM       Total length (mm)       A / Usc       A / Usc       A / Usc         PMM       Total length (mm)       A / Usc       A / Usc       A / Usc         Cost length (mm)       A / Usc       A / Usc       A / Usc       A / Usc         VMM       Total length (mm)       A / Usc       A / Usc       A / Usc         VMM       Total length (mm)       A / Usc       A / Usc       A / Usc         VMM       Total length (mm)       A / Usc       A / Usc       A / Usc         VMM       Total length (mm)       A / Usc       A / Usc       A / Usc         Verk length (mm)       A / Usc       A / Usc       A / Usc       A / Usc         Verk length (mm)       A / Usc       A / Usc       A / Usc       A / Usc         Verk length (mm)       A / Usc       A / Usc       A / Usc       A / Usc         Verk length (mm)       A / Usc       A / Usc       A / Usc       A / Usc         Verk	1	-	Total length (mm)	2		)	- \	1													-		
Weight (g)         I I I I I I I I I I I I I I I I I I I	·		Fork length (mm)	1				and a second					19	8							-	Τ	
Handle Berght (mm)         Catal length (mm)         Aud. Aug.         Aud. Aug.         Aud. Aug.         Aud. Aug.         Aud. Aug.         Aug. Aug.         Aug. Aug.         Aug. Aug. Aug.         Aug. Aug. Aug. Aug. Aug. Aug. Aug. Aug.			weight (g)		-		/								6.5							_	
Height (a)         Fork length (mm)         Fork length (mm)         Image: Constraint (mm)         Image:		Small gyte	Total length (mm)		ada	Vers				1.			-		111						-		
HMM.         weight (g)         Notal engent (mm)         Notal engent	4		Fork length (mm)			-				_					Sec.						_	Τ	
HUM         Total length (mm)         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I		tresser	weight (g)	[	)	1								8	-					_		-	
Herrik       Eork length (mm)       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I		<	Total length (mm)	-	_	++	-eot	1														Τ	
Weight (g)       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I	-U		Fork length (mm)	5	1		-				~							•					
Hurther         Total length (mm)         W 15         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H </td <th></th> <td>_</td> <td>weight (g)</td> <td>-</td> <td></td> <td>C</td> <td>T</td> <td>10</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.0</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>+</td> <td></td>		_	weight (g)	-		C	T	10	_							1.0					-	+	
Hold Weight (g)       Fork length (mm)       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       <			Total length (mm)		18	-	2-12	_							-			1					
weight (g)       weight (g)         Total length (mm)       L         Fork length (mm)       L         Neight (g)       N         Weight (g)       N         Verify (g)       N         Total length (mm)       N         Verify (g)       N         Verify (g)       N         Total length (mm)       N         Fork length (mm)       N         Verify (g)       N	9		Fork length (mm)	<u>}</u>	2				-		N		-		-			-			-	~	
Total length (mm)         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L <thl< th=""> <thl< th=""> <thl< th=""></thl<></thl<></thl<>	1		weight (g)	-	-							_		4		•				ť		+	T
Fork leight (mm)         Eork leight (mm)         Image: Construction of the state of the stat			Total length (mm)		1	3					1.		1		1							2	4 14
weight (g)       weight (g)         Total length (mm)       Total length (mm)         Fork length (mm)       P         Neight (g)       P			Fork lèngth (mm)	Z.		14 M.C.	-	2 A.	n P			3					1	-	1		+	T	
Total length (mm)       Total length (mm)         Fork length (mm)       Fork length (mm)         Neight (g)       No         Verify length (mm)       No         No       No         Total length (mm)       No         Fork length (mm)       No         Fork length (mm)       No         Fork length (mm)       No         Fork length (mm)       No         No       No         Fork length (mm)       No         No       No         Fork length (mm)       No         No       No	1		weight (g)	1			-			-		-	1	-				,			+	+	
Fork length (mm)         Fork length (mm)           weight (g)         weight (g)           Value         Total length (mm)           Fork length (mm)         meight (g)           Value         meight (g)	5		Total length (mm		2	14	- 41 - 41		1		14	-						Contra Co	1		-	Ì	9
weight (g)       weight (g)       meight (g)       meight (g)         Total length (mm)       Fork length (mm)       meight (g)         Fork length (mm)       meight (g)       meight (g)         Meight (g)       meight (g)       meight (g)         Fork length (mm)       meight (g)       meight (g)         Reight (g)       meight (g)       meight (g)         Fork length (mm)       meight (g)       meight (g)         Reight (g)       meight (g)       meight (g)         Fork length (mm)       meight (g)       meight (g)		~	Fork length (mm)			4.54		. 1.	1		*		赤、金もこ	. Ten ann					No.			Τ	2 AC
Total length (mm)       Total length (mm)         Fork length (mm)       P         weight (g)       P         Total length (mm)       P         weight (g)       P         Fork length (mm)       P         result       P </td <th>1</th> <td></td> <td>weight (g)</td> <td>1.00</td> <td></td> <td>*</td> <td></td> <td></td> <td>3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>+</td> <td></td>	1		weight (g)	1.00		*			3							_	_					+	
Fork length (mm)       Fork length (mm)         weight (g)       m         Total length (mm)       m         Fork length (mm)       m         Fork length (mm)       m         weight (g)       m	1		Total length (mm	(									No. 1.1									.4.	
weight (g)         weight (g)           Total length (mm)            Fork length (mm)            weight (g)			Fork length (mm)				2		1		N.			_							+	Τ	
Total length (mm)     Total length (mm)       Fork length (mm)     Image: Constraint of the length (mm)       weight (g)     Image: Constraint of the length (mm)	14		weight (g)			2 2 1	1.8					-	-	_	_		_				+		
Fork length (mm) veight (g)			Total length (mm	(	2	- 	1						-	_						T	T	Τ	
	1	0	Fork length (mm)				Real Property		k						_					,	-	Τ	
			weight (g)		-					_			_			_	_						

ß	count								
biolc	20			-	2				
& Hydrobiology	61				1			╉╌┼╌┽	╉╌┾╼╎╸
$\frac{1}{\sqrt{8}}$	18								++++
	17					-			
	16					-			
	15								
-	14	56		_					
	13				N -	-5 6		†	
= $2$ $2$	12				2-				
	11	57							
× *	9					- 54 - 54			
× ¥ [	6	92	- 3	-					
	∞			-	67 -	5 5			
	~				<u>S</u>				
	<u>ــــــــــــــــــــــــــــــــــــ</u>	22	- 57		3 -	- 2 5			
	ω		- 3			22 (-)			
<u><u>c-</u>3</u>	4	200		- 4		12 2			
. 67	mb	1	-27 6	352 -				3	
, de	× H	12 J. 2	-9-	t Ju	- 01		5 -	$\overline{\mathbb{N}}$	
Site name Collector Project code	1951		- 1:) -			15 2		1 00	
	(mm)				ÛUL ÛUL				(mm)
	stats ength ( ength (n	ley ngth (n (g) ngth (r	igth (n (g) ngth (r igth (m	<u>(g)</u> gth (r g)	ngth (r gth (m	lgth (r gth (m g)	igth (r gth (m g)	igth (n gth (m g)	gth (r gth (m g)
	Stats Total length (mm) Fork length (mm) weight (g)	Total length (mm) Fork length (mm) weight (g) Total length (mm)	Fork length (mm) weight (g) Total length (mm) Fork length (mm)	weight (g) Total length (mm) (94 Fork length (mm) weight (g)	Total length (mm) Fork léngth (mm) weight (g)	Total length (mm) Fork length (mm) weight (g)			
	<u></u> I	<del>╏╼╵╶╧╸┫╶┷</del>	┈┵╼╾┠╶╼┸╾┈┶╾	<u></u>	비포	<u> </u>	<u> </u>	ĔĔ	Ĕ Ĕ ≥
	T diritaria	5	+1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	100 V	, <i>1</i> 7	P			
Concise Concise	A MARK					17. 11. 17.	-per-		
Site number Watercourse Date		Powels when		WYN MANN		Niznut. Abirity	(- amport	Sland	
Site ni Watei Date	= =		n 4			<.			10

*** v ~~~

¥

. 1

·--/- · ••

Project code         Altername           Collector         Collector           (mm)         1         2         3         4         5         6         7         8         9           (mm)         Hemoly         1         2         3         4         5         6         7         8         9           (mm)         Hemoly         1         1         2         3         4         5         6         7         8         9           (mm)         Hemoly         <					-								4					((	Hudrobiology	oidor	100h	1
After All All All All All All All All All Al	Site n	number	0	Ite name												-		X			(Source)	
All       J. L. M.       Project code         Species       Stats       1       2       3       4       5       6       7       8         Common       Fork length (mm)       P       P       9       5       6       7       8       9         Public Species       Stats       1       2       3       4       5       6       7       8       9         Public Species       Stats       1       2       3       4       5       6       7       8       9         Public Species       Stats       1       2       3       4       5       6       7       8       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9	Wate	rcourse		ollector														•	,			
Full stats         1         2         3         4         5         6         7         8           Species         stats         1         2         3         4         5         6         7         8         9           ComMunit         Fork length (mm)         Eork length (mm)	Date	APUT	212	roject code								2	-		Y	(	<				-	
Species         Stats         1         2         3         4         5         6         7         8         9           Perform         Total length (mm)         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P		T.A.	5 500	1117.6	Ha	2	N	1	King	(rap)	J Mi	repay	And Sci	0	10105	was allow agin	12	-	-	-	< F	Γ
ComMunity     Total length (mm)     For klength (mm)     For klength (mm)       Kerk length (mm)     For klength (mm)     For klength (mm)       For klength (mm)     For klength (mm)     For klength (mm)       For klength (mm)     For klength (mm)     For klength (mm)       Total length (mm)     For klength (mm)     For klength (mm)       For klength (mm)     For klength (mm)     For klength (mm)       For klength (mm)     For klength (mm)     For klength (mm)       For klength (mm)     For klength (mm)     For klength (mm)       For klength (mm)     For klength (mm)     For klength (mm)       For klength (mm)     For klength (mm)     For klength (mm)       For klength (mm)     For klength (mm)     For klength (mm)       For klength (mm)     For klength (mm)     For klength (mm)       For klength (mm)     For klength (mm)     For klength (mm)       For klength (mm)     For klength (mm)     For klength (mm)       For klength (mm)     For klength (mm)     For klength (mm)       For klength (mm)     For klength (mm)     For klength (mm)       For klength (mm)     For klength (mm)     For klength (mm)       For klength (mm)     For klength (mm)     For klength (mm)       For klength (mm)     For klength (mm)     For klength (mm)       For kleng	.#	Species	Stats		З	4	ഗ	9	,	-	9 10	0 11	1 12	13	14	15	16	17	18	19 20	-	count
Could of the sector length (mm)       Eark length (mm)       In the sector length (mm)       In the se		-	Total length (mm)	19 19	bl	28															-	
Weight (g)     Weight (g)       Total length (mm)     Total length (mm)       Fork length (mm)     Total length (mm)       weight (g)     Total length (mm)       Weight (g)     Total length (mm)       Novelght (g)     Total length (mm)       Total length (mm)     Total length (mm)       Verify (g)     Total length (mm)       Novelght (g)     Novelght (g)       Novelght (g)     Total length (mm)       Novelght (g)     Novelght (g)       Novelght (g)     Total length (mm)       Novelght (g)     Novelght (g)       Novelght (g)     Novelght (g)       Novelght (g)     Total length (mm)       Novelght (g)     Novelght (g)       Novelght (g)	1	man man	Fork length (mm)		1																	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		)	weight (g)	5	-							_							-	+	+	Τ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-	12021	126	6														-	T	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	+ HASE LEANS		1														-			T	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		2		1	-														-	_	_	T.
Multiple         Fork length (mm)					1	Th														_		
weight (g)         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v <thv< th="">         v         v</thv<>	ſ	A handre		)		}	-															e.
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				1	l																	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		, 24	Total length (mm)	-	_						_	_								-		- ni
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4		Fork length (mm)				,									_						
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	_	-	weight (g)		8									12							-	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			Total length (mm)							3		_								-		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5		Fork length (mm)	3	44.5															-		1
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			weight (g)	ANO				2				-	_					8		+	+	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			Total length (mm)			C. C		K.			*	ę		_				\$		-		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	9		Fork length (mm)	4	2					51		+		_						+	Τ	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	1		weight (g)	20	-		2			-	f	_	_					2		-	+	
Fork length (mm) <td< td=""><th></th><td></td><td>Total length (mm)</td><td>1</td><td></td><td></td><td></td><td></td><td>and the second sec</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>Τ</td><td>e Al A</td></td<>			Total length (mm)	1					and the second sec											-	Τ	e Al A
weight (g)       veight (g)       r       r       r         Total length (mm)       Fork length (mm)       r       r       r         Neight (g)       Noight (g)       r       r       r       r         Fork length (mm)       Fork length (mm)       r       r       r       r         Neight (g)       Fork length (mm)       r       r       r       r       r         Fork length (mm)       Fork length (mm)       r       r       r       r       r       r         Moisht (g)       r       r       r       r       r       r       r       r       r       r       r       r       r       r       r       r       r       r       r       r       r       r       r       r       r       r       r       r       r       r       r       r       r       r       r       r       r       r       r       r       r       r       r       r       r       r       r       r       r       r       r       r       r       r       r       r       r       r       r       r       r       r       r       r       r	7		Fork length (mm)		4			1				_							-			
Total length (mm)       Fork length (mm)         Fork length (mm)       weight (g)         weight (g)       Total length (mm)         Total length (mm)       m         Fork length (mm)       m         Total length (mm)       m         Fork length (mm)       m         Fork length (mm)       m         Veright (g)       m         Total length (mm)       m         Fork lengt		r	weight (g)		-	A		R.		_		-		-						-	1	
Fork length (mm)       Fork length (mm)       Fork length (mm)         weight (g)       Total length (mm)       Fork length (mm)         Fork length (mm)       Fork length (mm)       Fork length (mm)         Total length (mm)       Fork length (mm)       Fork length (mm)         Meight (g)       Fork length (mm)       Fork length (mm)         Moline (g)       Fork length (mm)       Fork length (mm)         Moline (g)       Fork length (mm)       Fork length (mm)	0.4		Total length (mm)			•			Ċ.				¥.									
weight (g)       weight (g)       Total length (mm)       Total length (mm)         Total length (mm)       Fork length (mm)       Image: Constraint (constraint (consta	30	and the second s	Fork length (mm)	-							_			0								
Total length (mm)       Total length (mm)         Fork length (mm)       N         weight (g)       N         Total length (mm)       N         Fork length (mm)       N         Noisht (g)       N         Moisht (g)       N         Moisint (g)       N			weight (g)	- 					+		-	-		in the	1	_			12	-	-	
Fork length (mm)     Fork length (mm)       weight (g)     weight (g)       Total length (mm)     m       Fork length (mm)     m	14 ×		Total length (mm)								-		* /	_					1.0	-	Т	
weight (g)     weight (g)       Total length (mm)     Fork length (mm)	6		Fork length (mm)	x							•	-	12.00	-	_					1	T	1
Total length (mm)     Fork length (mm)       Fork length (mm)	1	and the second se	weight (g)	5	-							-	-	_	1				*		+	T
Fork length (mm)		and the second	Total length (mm)			12	**		0.			+	1	_				T	199		1	- Andrews
uncirch+ (a)	10		Fork length (mm)					1.				1									3	
			weight (g)			a				_				_					_	-	-	

Si	Site number		Site name	me														(	2			
N	Watercourse		Collector	or	40-1									-				)(	É R	/drob	Hydrobiology	λ
D	Date ABS	11:30 2/2/2	roject	2/2/2Project code							×	× test 60	40	$\bigcirc$					>		Ĵ	
• [	Traps	A ANDREA BELLE	Ĺ.							]			)									
#	t Species	Stats	1	2	с	4	ъ	9	7	ŝ	9 1	10 11	11	13	14	1	16	17	10	0		
		Total length (mm)	46	28	35	26	2	342	560	11	5		0	0	00	71.	207	1	0		20	count
1	Landman .	Fork length (mm)								<u>}</u>	1	3	N. C.	de la	101	t		101	2 2	10	0	54
	*	weight (g)	-	(		_	_	_	. (			-	-	-	-	-	-	-	_	-	_	
		Total length (mm)	69	200	177	583	1	- for		a la				-	-	1			1	-		
5	1 " Oguman	Fork length (mm)	) 	1		Π	-	*	2				-						19	-		
	7	weight (g)	Q	2	2	2		your?							- 8 Y			-				
	Lever Eyte	Total length (mm)	28	210	21.	66	14	25 2	27.2	1	L. Z.	12.1	64. 4	0	26	01	66	0 70	5 1 0	0 6	2	4
<u>.</u>	Grandbur in	Fork length (mm)	134	the second	No.				1								1		V	1	FH	1
		weight (g)	-1	-		1.		100	1			100		the second	100	10	1	-	_	-	7	14
		Total length (mm)	2CK	EL.	23	72	181	100	202	30 1	4	-test	K	371	26	they	7	8		-	-	5
4	X ordered	Fork length (mm)	skr:	調査のない	1000			-	2		1	The state	10	10		2	1	0	- Aller	1	Τ	ľ
		weight (g)	2	2	2	2	. 2	. (	11	1000	2	1	0	6	6	5	<i>.</i> Г		5-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	1		
		Total length (mm)	24	25	36	55	285	6 20	10'	5 3-	7 11	62 0	22	12	10	71	1	9		10	States - States	
ы	Mounda	Fork length (mm)	5				-2				tet.	1	4		- A	R				1	109	
	1 - 0 - 1	weight (g)	7	5	H	T	21	+	H C	1 0	717	1	E.	2	2.9	2			STATE OF STATE		*	
	L CP ALL	Total length (mm)	2	X	and ?	A		-					*	14		J		-				
9	- A-Co-	Fork length (mm)	1		>									,	*	1				+	Т	
		weight (g)						-					*		1						T	100 - 10 10
	grund after	Total length (mm)	17	1	Keo	V				-	-								-			
2	Awbacsic	Fork length (mm)	j.	,	-										-6					-	Τ	
		weight (g)	9			1						· 4.						-	+		Τ	
		Total length (mm)	-	and a	5													┢	-	-		1
∞	treves	Fork length (mm)		1									1								Γ	
	0	weight (g)		www	S												41					
	O V V	Total length (mm)	2	26	S	22	22 4	42 2	375	621	34	is t	100	027	62	52	50					
б	Ma	Fork length (mm)										12	1							+	Т	ning -
		weight (g)	2	C	2	2	0	2	77	4 2	1	+	0	2	5	Ć	t				Í	
1		Total length (mm)	42	22	28	24	24 2	222	96 30	62	2	722-	121	56	N	5	1					
10	(Jawaburger	Fork length (mm)			. د	-						7						-		1		1
	<b>x</b>	weight (g)		-	-	_	1	1				-	-	-	-			4			T	10
A.											J.M.	C. M.	-							1.10	-	1

drobiology	
Ě ()	•

.....

- 4

Site number Watercourse	Site name Collector Project code	

5

#	Species	Stats	1	2		4	S	6	7	8	9 10	0 11	1   12	2 13	14	15	16	17	18	19	20	count
	1, 1 2	Total length (mm)	78	R	(1)								-+									
-	Ordnerw	Fork length (mm)	 \					-							_					_		
		weight (g)	Z	Ì	- i																	
	100 UN- 700	Total length (mm)	2	K,	25	5-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	202	20	$\overline{\Sigma}$				-+	+					_	_		
7	203	Fork length (mm)		· · ·					_					_								
	(JUMBUY)	weight (g)		. /	·				_					_								
		Total length (mm)			-																	
m		Fork length (mm)																				
		weight (g)												_		-				_		
		Total length (mm)		-								-				+	_					_
4		Fork length (mm)													_							
		weight (g)																				
		Total length (mm)									-					_						
ъ		Fork length (mm)		_								 	_						_	_		
		weight (g)										-		-				†		+		
		Total length (mm)															_					
9		Fork length (mm)																			_	
		weight (g)											-								_	
		Total length (mm)																				
7		Fork length (mm)				,		-				-										
		weight (g)		-		-				_			-+	_				_	_	_		
		Total length (mm)					<del>,</del>							_				_			_	
∞		Fork length (mm)							-					·	_+	-						
		weight (g)			·											+						
		Total length (mm)			-	_							-		- +			_				
້ ຫ	:	Fork length (mm)										-	- +			•						<u> </u>
		weight (g)														$\dashv$			-	-+		
		Total length (mm)					-							+				_†-	-+-			
10		Fork length (mm)					•		-+	-	-+		-+	-+	_	_						
		weight (g)				-	_														_	

and the second 
1

)

· · · · · · · · · · · ·

.

Site	Site number		Site name	ame						Γ								(	2			
Wat	Watercourse AB7		Collector	tor														$\langle \rangle$	Í R	Hydrobiology 🖉	iolog	No.
Date	2	12/22	Projec	Project code														•	,			
	7 1205								1	]						•						
#	Species	Stats	1	2	3	4	S	9	7	∞	9 10	0 11	1 12	13	14	15	16	17	10	0	$\vdash$	
	V	Total length (mm)	1 32	28	1+	tt	and the second second		1				5	-	-	2			q	+	70	count
Ч	Mogunda	Fork length (mm)				1							1									8
		weight (g)	) /	-																		
		Total length (mm) (2-6	92)	12	1	AF			10		-			-						+	+	
2	Gardingia	Fork length (mm)	)																		Τ	
		weight (g)	-	_										-								
	- A - L - M	Total length (mm)	021	2010	te	5						1			1						+	
m	Hyperson	Fork length (mm)	>	l																+		
14 m		weight (g)				P																
	0 · · · · ·	Total length (mm)	21	2	¥ (	40																
4	Abydre	Fork length (mm)	5	-		P					-											
	2	weight (g)	-																		T	
	Care Sysel	Total length (mm)	-	adre	Yr																1	
ъ	Broad-shall	Fork length (mm)																				
	snake-neut	weight (g)																				2
:		Total length (mm)	126	36	32 6	201	527	N	34 2	3 3	22 31	236	27	621	20	17	215		000	0	1	+21
9	Moampt	Fork length (mm)		1		-	1	-	-		1				P.		)	9	A	2	-+-	121
	La kept	weight (g)	-	-		(			_			-	-	-	-	-	-	-	-	-	+ -	70
	F.	Total length (mm)	30	02	. 042	26:	20,3	5 2	2 2	620	979	8 37	24	202	200	22	20		1	223	t	2
2	(rambusul)	Fork length (mm)													X	)	K	2.		N	P	
	( - AU key ~	weight (g)	_		_	_			-	-		-	-	-	-	-	-	-	-			
_		Total length (mm)	26	29	17	29 3	38 2	5 7	63	2	8 34	+ 28	12 27	10	200	19	79	00	6 12	11	+	ti
∞	T / upperestins)	Fork length (mm)	<u>.</u>		-		T all						-			V		9	P	~	+ +	20
	- All kept	weight (g)	_	-	-	-					-	-	-	-	-	-	-	-	1 2	-	24	201
-	A when Les	Total length (mm)	26	1t	30 9	6	297	26				12	12	-		-		-	-		-	20
6	( nermalt)	Fork length (mm)																				
	AN Kert	weight (g)	-	_		J	1						12									
	1111	Total length (mm)	26						1										+	+		Τ
10	Conferent	Fork length (mm)					a the	2													Τ	
	- Rent	weight (g)								_											- 3	
	1				2245					-		-		_			1		-		1	

Startmenter         Startmenter         Startmenter         Artenant         Artenant <th>125</th> <th></th> <th></th> <th></th> <th></th> <th>1/2</th> <th></th> <th></th> <th></th> <th>Г</th> <th></th> <th>14. 4</th> <th></th> <th>14</th> <th></th> <th></th> <th></th> <th>1</th> <th>•</th> <th></th> <th></th>	125					1/2				Г		14. 4		14				1	•		
Materiorine         Concore           1         Species         \$133         1         2         3         4         5         6         7         8         9         0         1         13         14         15         16         13         13         14         15         16         17         18         19         20         count         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th>Si</th> <th>te number</th> <th>Sit</th> <th>e name</th> <th>_</th> <th>2</th> <th>Ln y s</th> <th></th> <th></th> <th></th> <th>7</th> <th>1</th> <th>10</th> <th></th> <th></th> <th></th> <th></th> <th>Ò</th> <th>SHydi</th> <th>robiol</th> <th>ogy</th>	Si	te number	Sit	e name	_	2	Ln y s				7	1	10					Ò	SHydi	robiol	ogy
Date         Project cole           1         Youruk         Satis         1         2         3         4         5         6         7         8         10         11         12         13         14         15         16         15         20         control           1         Muruk         Folset segeth minin         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7	N 10	atercourse	S	llector	3		1.167			~	5	P	A	¢					•		
in         Species         Satistication         Statistication         Statisticatistication         Statistication		ate	Pre	oject cod	e U						S.		_	1							ł
#         Species         Static	1.1				$\sqrt{r_{s}}$	- 12	1	22			H)				4		15	┝	-	-	
1     Monuch     Total terept (mm)     27     10     23     24     24     24     24       1     Monuch     text terept (mm)     2     2     2     1     1     2       2     Monuch     text terept (mm)     2     2     2     2     2     2       3     Round     text terept (mm)     2     2     2     2     2     2       3     Round     text terept (mm)     2     2     2     2     2     2       3     Roundouv     text terept (mm)     2     2     2     2     2     2       4     Coundouv     text terept (mm)     2     2     2     2     2     2     2       5     Hundouv     text terept (mm)     2     2     2     2     2     2     2       6     Roundouv     text terept (mm)     2     2     2     2     2     2       6     Roundouv     text terept (mm)     2     2     2     2     2     2       7     Coundouv     text terept (mm)     2     2     2     2     2     2       6     Roundouv     text terept (mm)     2     2	1	η	Stats			4	S	9			-	-	12	13	14	15	-	-		-	count
1       Why wells       East length (imit)       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1		(	Total length (mm)	12 262	526	220	27	000			82	BC	26	2	26	20	262			1	~
And Luck         weight (g)         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	Sec. 1	W organdy	Fork length (mm)		E.	1		-			-			-						_	-
2       Merry Mit Marketh (mm)       Total tength (mm)       2       Total tength (mm)       2       Merry Mit Marketh (mm)       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 </th <th></th> <th></th> <th>weight (g)</th> <th>/ /</th> <th></th> <th>-</th> <th></th> <th></th> <th></th> <th></th> <th>0</th> <th>N</th> <th>e</th> <th></th> <th></th> <th>-</th> <th>_</th> <th></th> <th></th> <th>_</th> <th></th>			weight (g)	/ /		-					0	N	e			-	_			_	
12         Monute         Forthereght (mm)         2         Forthereght (mm)         2         Forthereght (mm)         2         Forthereght (mm)         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	1		th (mm)	791	120	-				-					ł	/	-				
Modernet       weight (B)       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <th1< th="">       1       1</th1<>	19. A.		Fork length (mm)		-							E.									
Row Mov.         Totaliergeti (mm)         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th></th> <th></th> <th>weight (g)</th> <th></th> <th></th> <th></th> <th></th> <th>1</th> <th></th>			weight (g)					1													
Rawlow       Forklength (mm)       Constrength (mm)       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L <thl< th="">       L       L</thl<>	· · · · ·		th (mm)	0	5	14	37	2 32	S.												
weight (g)         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I	3	X	Fork length (mm)	3																	r'v
Graw Jouris       Tatal length (mm)       7.6       2.6       7.4       2.6       7.4       2.6       7.4       2.6       7.4       2.6       7.4       2.6       7.4       2.6       7.4       2.6       7.4       2.6       7.4       2.6       7.4       2.6       7.4       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1 <t< th=""><th>2 2 2 4 4</th><th></th><th>weight (g)</th><th></th><th>_</th><th>-</th><th></th><th>_</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>2</th><th></th><th></th><th></th><th></th></t<>	2 2 2 4 4		weight (g)		_	-		_									2				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Total length (mm)	-	591	170	22		2 6	721	1224	2	2	277	52		512	6	L	00	+14
Weight (g)       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H	4	-	Fork length (mm)		>		-				-	•		-			-				40
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<u>,</u>		weight (g)		-	-		_			_			-	-	1	[				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4		Total length (mm)	5	424					-	-	 	N.C.			_		_			2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ى 	Harlow H	Fork length (mm)							-		8									
$ \begin{array}{c} WO^{2} \mathcal{F} \mathcal{G} \mathcal{G} \mathcal{G} \mathcal{G} \mathcal{G} \mathcal{G} \mathcal{G} G$	) 10		weight (g)		-					-											
$ \begin{array}{c} Faulo \\ Fork length (mm)	P . 7 2	7 NO61	Total length (mm)	t	26 5						ar Nga										-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	9	fc	Fork length (mm)	-	(i) Parties						-								_	_	
$ \begin{array}{c} \hline \label{eq:constraint} & \mbox{Total length (mm)} & \mbox{Total length} & \mbox{Total length}$	-	7	weight (g)	_			Ņ				<b>a</b>										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1		Total length (mm)	277		76	52	171	8	00	25	2	7 19	27	22	33	29				
weight (g)       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M	7							(a)) (a)	14. 		_		-		-	-					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	a.t.	4/2000000000000000000000000000000000000		_		_	_	-	the of the	1		-		-	_	_	-				
Fork length (mm)       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·	m. 12			30								-				_	<u>.</u>			3.3	
weight (g)       weight (g)         Total length (mm)       7       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       3       3	00	H CO		)								1									
Total length (mm)       T       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z       Z <thz< th="">       Z       <thz< th=""></thz<></thz<>	in the second se	3			-										¢			the second		_	
Fork length (mm)       Fork length (mm)         weight (g)       weight (g)         Total length (mm)       m         Fork length (mm)       m         weight (g)       m	ant		Total length (mm)	J. A	2 1	0	0	2	2	2	N	2	0	Ň	0	2			1	_	-
A     weight (g)       Total length (mm)       Fork length (mm)       weight (g)	ບາ 	+ Harrison	Fork length (mm)			er.	10 m								4.55						
	AT A	0 *	weight (g)	1		•	4	5	-	Ţ.		_	-				-	-	/	-	5
F.	N.C.		Total length (mm)				1	-	400 V	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-				1						
weight (g)	1		1			142		with.	1967.	*									-	-	-
			weight (g)								st.								_	_	_

	Site	Site number		Site name	ame							_							11	$\langle$	-		
	Wati	Watercourse		Collector	ctor	<u> </u>						,							* \	Ż	Hyard	Hydrobiology	gy S
	Date		10/0/2	Proje	Project code					£			¥	*	/.				•	,			
												_	X	ر -	2>								
	#	Species	Stats	-	2	ŝ	4	ഹ	9	4	∞	6	10	11	12	13 1	14 15	5 16	17	18	19	20	count
		1 / . No	Total length (mm)	<u>ا (۱</u>			, 											+	+				
	IJ.	Later - Cater	Fork length (mm)	(	1	1 X										-	-						
	(2 <b>)</b> #2		weight (g)									$\left  \right $			$\left  \right $								
			Total length (mm)	27/12 (1	16 2	56 1	26	5	2)	26	1	23 1	F	1 <u>×</u>	1,1					-			
	2		Fork length (mm)	-			<u> </u>				   ,		٦.		5								
		12annon	weight (g)	1	-		-	 	- <u>·</u>			   .   .		•		+-		-					
			Total length (mm)	) (	$\gamma \gamma$	$\langle X $	-				,	-					·  	-	. 				
	ŝ		Fork length (mm)	(																	-		_
			weight (g)																	-	 		
			Total length (mm)	n[74		 	1 X	· · ·								-	_						
	4	(Tambusua)	Fork length (mm)			(—	<b>⊢</b>					    .					-			4			
			weight (g)									$\left  \right $											
		/	Total length (mm)	(			`.		i.											-			
	м 		Fork length (mm)		<u>.</u>															 			
		the ent	weight (g)													-							
			Total length (mm)	-											╞	   .							
*	9		Fork length (mm)		-					~											<u> </u>		
			weight (g)							•													
	_		Total length (mm)			•	-				<b>a</b> .												
			Fork length (mm)													<u> </u>				 	 		-
			weight (g)										·										
		<u> </u>	Total length (mm)	6																		į	
	~		Fork length (mm)				4											 	· -				
			weight (g)	-	_												 						•
!		<u> </u>	Total length (mm)																				
	თ		Fork length (mm)		*															<u> </u>			
			weight (g)		¥		,	r										 					•
	_	1	Total length (mm)	-		N															 		
	10	<u></u>	Fork length (mm)													-	 	 					- <u>).</u> 
•			weight (g)			,										•							Party .
									ι 	•		,											

ļ,

		Cito pamo		-					-								\	= %	1000		2
<u>\{`})</u>		Colloctor	<u>ה</u>														A	r V		01010	2
2 - 1		Droiact rode	apo			-							``					)			
+									7												
another for the	Stats	7	2	m	4		6 7	8	6	10	11	12	13	14	15	16	17	18	19	20	count
	Total length (mm)	58	ante	 \$																	
Frends	Fork length (mm)																				
۔ ر	weight (g)	2	Jurdante	why	 +																
P. rad . July	Total length (mm)	<b>,</b> mini	Time	2				_											·		
	Fork length (mm)		,	2				_													
at an	weight (g)			-																	
	Total length (mm)		$A \ll$																		
Marman /	Fork length (mm)		•	) 																	
	weight (g)												·								
Sar L	Total length (mm)			57	-	Kch	, , , ,														
	Fork length (mm)	,	<u> </u>	(-		-															
Keldhun	weight (g)	r.		14																	
	Total length (mm)			21																	
•	Fork length (mm)																				
1) graceres	weight (g)		1																		
	Total length (mm)			5	322	29		•													•
(Hatter	Fork length (mm)					-	-														
	weight (g)					_															
	Total length (mm)				-		1										_				
	Fork length (mm)												•								
	weight (g)																				
	Total length (mm)																				
	Fork length (mm)				-	<u> </u>															
	weight (g)						•														
	Total length (mm)											-						_			
	Fork length (mm)											<del></del>									
	weight (g)													•		₽`					
	Total length (mm)																				
:	Fork length (mm)																				
														_	_	_					

Watercourse Date AB + Species + Species 2 Lant-suffe 2 Lant-suffe 3 almight 4 Painben 5 Had heat		Toject code t. Toject code t. $ \frac{1}{12} = \frac{2}{3} = \frac{3}{4} = \frac{5}{5} = \frac{6}{7} = \frac{8}{9} = \frac{9}{10} = \frac{11}{11} $ $ \frac{1}{12} = \frac{2}{5} = \frac{2}{5} = \frac{1}{10} = \frac{11}{10} = \frac{1}{10} = \frac$
		$\begin{array}{c} collect code t, \\ \hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\ \hline 2 & 14 & 155 & 126 & 142 & 160 & 170 & 162 & 17 & 122 & 13 & 14 & 15 & 16 & 17 & 122 & 132 & 141 & 152 & 162 & 172 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & 152 & $
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		$\frac{214}{22} \frac{155}{26} \frac{76}{16} \frac{76}{20} \frac{162}{16} \frac{132}{10} \frac{15}{20} \frac{15}{20} \frac{162}{20} \frac{134}{20} \frac{190}{10} \frac{120}{20} \frac{122}{20} \frac{162}{20} \frac{134}{20} \frac{190}{20} \frac{120}{20} \frac{122}{20} \frac{120}{20} $
		$ \frac{100}{12} \frac{36}{26} \frac{1}{24} \frac{108}{10} \frac{110}{40} \frac{40}{60} \frac{70}{20} \frac{5}{28} \frac{28}{28} \frac{806}{8} \frac{8}{2} \frac{100}{20} \frac{100}{20$
		$\frac{100}{12} = \frac{36}{2} = \frac{26}{2} + \frac{108}{10} = \frac{100}{10} + \frac{100}{20} = \frac{100}{20} = \frac{100}{20} + \frac{100}{20} + \frac{100}{20} = \frac{100}{20} = \frac{100}{20} + \frac{100}{20} = \frac{100}{20} = \frac{100}{20} + \frac{100}{20} = \frac{100}{$
		$ \frac{422}{12} = \frac{1}{2} \frac{1}{16} \frac{1}{10} \frac{1}{50} = \frac{1}{2} \frac{1}{2} \frac{1}{12} \frac{1}{10} \frac{1}{50} \frac{1}{12} \frac{1}{1$
		$\frac{12d4}{12} = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 10000 = 1000 = 10000 = 1000 = 1000 = 1000 = 1000 = 1000 $
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		$\frac{1}{12}   2   6   0   80   90 + kept \\ \frac{1}{28} - ket \\ \frac{1}{2}   5   6   0 50 \\ \frac{1}{28} - ket \\ \frac{1}{2}   5   58   58   54   55   12   55   12   55   12   55   12   52   5$
		12 12 16 10 50 78] - 46+ 50 45 51 58 54 63 57 51 42 62 44 2 4 4 4 4 4 4 2 4 4 2 4 4 2 4
		12 12 16 10 50 73 - 46+ 50 45 91 58 94 63 52 51 48 62 44 2 4 4 4 4 4 4 4 2 4 4 2 4 4 2 4
		78] - 46+ - + + + + + + + + + + + + + + + + + +
		4 · · · · · · · · · · · · · · · · · · ·
		4 3 62 61 58 94 63 52 51 42 62 62 44 2 4 4 4 4 4 4 4 4 2 4 4 2 4 4 2 4
		50 45 91 58 94 63 52 51 48 62 56 48 62 4 2 4 4 4 4 4 4 4 4 7 4 7 4
_		オンオオオオオン
·		<u><u><u></u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>
-		
	L	133 4134 33 46 3
6 (Jass	ag starts Fork	(mm)
•		weight (g) 1 2 1 2 1 2 2 1 2 1 1
		127 + A. A.
7   Rowineur	 {	Fork length (mm)
	weig	
		Total length (mm) 292 270 298 20 (9UV 257 1152 135 1126 1126 110 324 224 223 165 21 9 22 8 202
8 KWART	1	
?   -		weight (g) 1200 160 260 20 40 40 40 25 40 25 15 260 160 240 90 35 90 120
	!	
9 · vourer		h (mm)
jo I	-	
Marithan.		Total length (mm) (8) K-e() K
10 10		Fork length (mm)
	weig	weight (g)

•

																		(				
Site	Site number		Site name	ame											r			()	₹ X	X Hvdrobiologv	ologv	_
Wa	Watercourse		Collector	tor											r				)		5	
Date			Proje	Project code													•	. 1				
	Conall Rube																					[
#	Species	Stats		2	3	4	5	. 9	7	8	9 10	0 11	12	13	14	15	16	17	18	19 2	20 co	count
	Farlen	Total length (mm)	) (u	40	A M		-															
<del>, 1</del>		Fork length (mm)	()																			
	( clart / wee	weight (g)		-(	—,																	
		Total length (mm)	u) (2.2	しつ	Pero	b																
2	Kedelan	Fork length (mm)			3		-															
	>	weight (g)	<i>X</i> .										_					<u>د</u>				
		Total length (mm)		сî,	m) ( 14	ر. ا <del>بر</del>											:					
<i>с</i>	x 2xt	Fork length (mm)	(1				_															
	) 32	weight (g)		$\mathbb{P}$	للمددين	· • • · · ·																
		Total length (mm)	n) [32	3 36	15-	1	THE W	\														<u> </u>
4	/ myssyl >	Fork length (mm)			د 		<u> </u>															
	, () 2	weight (g)	C	2	2					 												
		Total length (mm)	n) 162	251	58	00/	55	310	242	23, 21	(; 0	2	8 34	- 27	32	57	33/		315	3113	+	5
	$\left  \left\{ \left  \frac{1}{\sqrt{2}} \right  \right\} \right  $	Fork length (mm)	<u>م</u> (د				•					_						)				)
		weight (g)	2	<u>ر</u>	1	$\mathcal{O}$	2				•		, <b></b>			$\sim$						
		Total length (mm) $5$ $\%$	n) 12 5	21	20	22	232		1 C C t	$\frac{1}{4}$	-		•				-		-	, ,		<b>_</b>
9	2), 24 5 ( Colors	Fork length (mm)	<u> </u>				ל		>													
	R	weight (g)			-		-				· ·	-										
	. 1 - (3	Total length (mm)	n) 12.8	8	-																	
~	Krow pream	Fork length (mm)																				
	)	weight (g)	22																_			7
		Total length (mm)	<del>ر</del>										-									
8		Fork length (mm)	(					_														
		weight (g)																-		-		[
		Total length (mm)	<u>د</u>		_															+		
5		Fork length (mm)	(-																			
		weight (g)																				-
		Total length (mm)	(u																	+		
10		Fork length (mm)	(						<u>۔</u>					I								
	ſ	weight (g)																;				

I

- --

<u> </u>	Cito numbor		
<u>-</u>	Watercourse AB	Collector	>
- <b></b>	Date 11/2/2	Project code	
<b>ا</b>	E-win boo		
	# Snecies		
	C+	$(mm) \frac{1}{160} \frac{1}{MC} = \frac{23}{23} \frac{1}{23} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{11}{12} \frac{12}{13} \frac{13}{14} \frac{15}{15} \frac{16}{17} \frac{13}{18} \frac{19}{19} \frac{20}{20}$	count
	1 7000		
1	pream	13012 178 184 197 22 40 60 20	
	ľ O	74 76 92 72 63 65 92 1 32 49 - 12 2 8 6 m - 1	
	2 Jawren		~
4		weight (g)   0 4 4 4 7,6 47,4 7,1 10 10 10 10 10 10 10 10 10 10 10 10 10	
•			
	3 Vellenbergh		
1		weight (g) 2038	
		Total length (mm) $26 105 117 121$	Ţ
	4 1 that were	1	
	)	weight (g) 1() 2020 weight (g)	
	-	Total length (mm)	
-	5	Fork length (mm)	<u> </u>
		weight (g)	=
		Total length (mm) / 1 36 41 化 6 7 4 8 4 /	
	6 + Jack Ver		<u> </u>
4	5	221	
		Total length (mm)[[86](9/2)[19](40](12][17] VXC 92 12 5 88 107 169	
	7 interver ed		
I	0	weight (g) 744 64 30 20 40 20 6 30 6 18 QG	
		) ZSJ - 420 +	
	8 11.10 grown	Fork length (mm)	<u> </u>
L		weight (g)	
	V	Total length (mm) 2.57	
ian kar	markenon 6	Fork length (mm)	
L 		weight (g) 30	
			Ţ
	10 / (N/Walakam Md)		
J 		weight (g)	
			7

......

obiology
łydı
(Ō

 	Site number	Site name Site name
-	Watercourse	
	Date	Project code
-		
	# Species	3         4         5         6         7         8         9         10         11         12         13         14         15         16
·	· · · · · · · · · · · · · · · · · · ·	Total length (mm) 1972 80 93 21 91 104 83 95 64 68 71 78 76 65 103 109
	1 Hon grow	
	Cour of	12 12 12 12 12 12 12 12 12 12 12 12 12 1
	Mown-	Total length (mm) 13-0 2-0
	2 militar	h (mm)
	0 2/	
	Sleers	Total length (mm) ( (5 )) - そ () ( )
	3	Fork length (mm) L
	(real)	weight (g) 1720
		Total length (mm) [[ [〇 ( 〇 ) 上 い ( )
	4 Nortellondun	
		weight (g) 2 7
		Total length $(mm)/(5Q) - 4e_s/4$
	5 ( - Lassian h	Fork length (mm)
		5
		Total length (mm) ひらのなない
	6 Hadylead	
		weight (g)
		Total length (mm) 2LF 12
	7 CONNNN	Fork length (mm)
		weight (g) (6 )2
244	Merry W. M. I . When ed Total length (mm)	1 alm A
Ś	(8 ITM MARINE	
_	1 turde	weight (g)
_		Total length (mm)
	6	Fork length (mm)
1		weight (g)
		Total length (mm)
_	10	Fork length (mm)
		weight (g)

Ì

# REACH OBSERVATIONS (of 100 m stream length)

### Site Details

Site Number	AB3
Watercourse	
Date (DD/MM/YYYY)	30/1/22
Time (24 hrs)	12:30

Site Name	
Collector (initials):	Project Code:
Drone footage time:	length:

#### Observations

Macrohabitat	Substrate Description
Bars (bed surface protruding from normal water level) %:	
	Water Odour 🛛 yes 🗗 no, Specify
Sediment Deposits 🗹 None 🛛 Sand 🗆 Silt	Sediment Odour 🗆 yes 🗹 no, Specify
Point Source Discharges 🗆 yes-🖬 no	
	Local catchment erosion %:
Right Bank erosion %:	Flow level: 🗗 None 🗆 Low 🗆 Moderate 🗆 High 🗆 Flood
Right Bank land use: Cleared / gazam	
	Algae in water column % cover: 20
Left Bank erosion (%):	
Left Bank land use: Clearch /grazing	Algae on substrate % cover: 300

## Macrohabitat

Value (%)
100

# Microhabitat

l

		Cover
Cover	Value (%)	Bedrock
LWD (>15 cm dia)	$ \mathcal{O} $	Boulder (>256 mm)
SWD (<15 cm dia)	10	
Detritus	6	Cobble (64-256 mm)
	- 1 Lots	Pebble (4-64 mm)
Periphyton	O ( Selined	ravel (2-4 mm)
Blanketing Silt	0	Sand (0.05 -2 mm)
Undercut Banks	$\bigcirc$	
		Silt/Clay (<0.05 mm)

# Macrophytes and Algae

<b>Primary Production</b>	In
Macrophyte % [ 26 ]	Edge % [   00 ]
	Run % [ ]
	Riffle % [ ]
	Pool (rocky) % [ ]
Algae % [30	Edge % [ 9 () ]
	Run % [ ]
	· Riffle % [ ]
	Pool (rocky) % [ ] ]

Macrophyte Botanical Name	Value (%)
1. Myrophyllin	25
2. pacopa (dect photo)	25
3. Ludwigen	25
4. Jupling	25
5 0'	
6	
7	
8.	

Hydrobiology

pg1of2

Value (%)

6

 $(\mathcal{A})$ 

# REACH OBSERVATIONS (of 100 m stream length)



Longitudinal Extent of Riparian Vegetation

	Category	Description
	Occasional	Clumps of tree among exotic grasses and pastures
ed)	Semi- contiguous	Cleared patches of trees
·····	Contiguous	Intact tree line
	Description No trees or shrubs, only exotic grass Isolated trees or shrubs among exotic	Description     Category       No trees or shrubs, only exotic grasses or pasture     Occasional clumps       ed     Semi-contiguous

Comments

une providing some habitor. Algal scum on MZ. LQ NOT -) ≽ Hydrobiology

## MACROINVERTEBRATE SAMPLING FIELD SHEET

#### **Site Details**

Site Number	AB 3
Watercourse	
Date (DD/MM/YYYY)	30/1/73
Time (24 hrs)	12:30

Site Name	
Collector (initials)	
Project Code	

Edge/Backwater: Yes □ No □ QAŽQC Residue Yes □ No □

Rep	No Vials	Collected by	Picked by	Label	Comment
1	(	541	JH1	AB3-Edge	
2					
3					
4					
5					

#### Variables

Mean Sample Depth (m)	D.Z	Substrate Description	n (% cover)		
Mean Wetted Width (m)	>100m	Bedrock		Gravel (2-4 mm)	$ \langle \rangle$
Method: Sweep		Boulder (>256 mm)		Sand (0.05- 2 mm)	
Canopy cover (%)	$\Box$	Cobble (64-256 mm)		Silt/Clay (<0.05 mm)	90
Shading (%)	Ô	Pebble (4 – 64 mm)			
Snags and LWD (% cover)		Microhabitat Attribu	tes (% cove	r)	
<b>Snags and LWD (% cover)</b> Detritus (leaves & twigs)	10	<b>Microhabitat Attribu</b> Periphyton	tes (% cove	r <b>)</b> Bank overhang veg	$\bigcirc$
	10		tes (% cove	<u>·</u>	$\bigcirc$
Detritus (leaves & twigs)	10	Periphyton	tes (% cove 5 	Bank overhang veg	000

#### Comments

Ver Reported Lake edge W/ timbe backing apart from dense algae / myrioghyphin.



#### MACROINVERTEBRATE SAMPLING FIELD SHEET

Bed: Yes ☐ No ☐ Collected by: [ | ] Picked by: [ | ] No. vials/reps: [ ] QA/QC Residue Yes ☐ No ☐ Type: Riffle ☐ Run ☐ Pool (rocky/gravel) ☐ Pool (sandy/silt) ᠊ ☐

Rep	No Vials	Collected by	Picked by	Label	Comment	
1		JH	AL	AB3-Bed		
2						
3						1
4						
5					· ·	• <u> </u>

#### Variables

Mean Sample Depth (m)	0.5	Substrate Description	n (% cover)		
Mean Wetted Width (m)	>10m	Bedrock		Gravel (2-4 mm)	10
Method: Sweep		Boulder (>256 mm)		Sand (0.05- 2 mm)	
Canopy cover (%)	$\mathcal{O}$	Cobble (64-256 mm)		Silt/Clay (<0.005 mm)	90
Shading (%)		Pebble (4 – 64 mm)			-
Snags and LWD (% cover)	)	Microhabitat Attribu	tes (% cove	r)	
Detritus (leaves & twigs)	Б	Periphyton	$\bigcirc$	Bank overhang veg	6
Sticks (<2 cm diam)	5	Moss	$\bigcirc$	Trailing bank veg	T
Branches (<15 cm diam)	0	Filamentous algae	$\left[ \left( O \right) \right]$	Blanketing Silt	$\square$
Logs (>15 cm diam)	8	Macrophytes	5	Substrate anoxia	0

#### Comments

ĺ	Tubid, julo hobilal
	fuibility man and the
ļ	



# REACH OBSERVATIONS (of 100 m stream length)

## Site Details

Site Number	Site Name
Watercourse	
	Collector (initials): Project Code:
Date (DD/MM/YYYY)	
Time (24 hrs) 10:00	Drone footage time: length:
Observations	
Left Bank land use:	
	Algae on substrate % cover: 30
Left Bank erosion (%):	Algae in water column % cover: 20
Right Bank land use:	
Right Bank erosion %:	Flow level: 🗆-None 🗆 Low 🗆 Moderate 🗆 High 🗆 Flood
	Local catchment erosion %:
Point Source Discharges □ yes □-no	Sediment Odour 🗆 yes 🖬 no, Specify
Sediment Deposits 🗆 None 🗇 Sand 🗇 Silt	
Bars (bed surface protruding from normal water level) %:	Water Odour 🗆 yes 🖻 no, Specify
	Substrate Description

#### Macrohabitat

-----

Cover	Value (%)
Riffle (%)	
Run (%)	
Pool (rocky) (%)	
Pool (sandy/silt) (%)	
Dry (%)	

## Microhabitat

Cover	Value (%)
LWD (>15 cm dia)	5
SWD (<15 cm dia)	10
Detritus	10
Periphyton	~
Blanketing Silt	
Undercut Banks	

## escription

Cover	Value (%)
Bedrock	
Boulder (>256 mm)	.5
Cobble (64-256 mm)	10
Pebble (4-64 mm)	
Gravel (2-4 mm)	
Sand (0.05 -2 mm)	
Silt/Clay (<0.05 mm)	90

Primary Production	in
Macrophyte % [ 35]	Edge % [ 0()]
	Run % [ ]
	Riffle % [ ]
·	Pool (rocky) % [ ]
Algae % [ G 📿 ]	Edge % [ 9 0 ]
	Run % [ ]
	Riffle % [ ]
	Pool (rocky) % [   ()]

Macrophyte Botanical Name	Value (%)
1. Myrophyllan	70
2. Judinara	10
3. Persicana	$\frac{1}{10}$
4. Copens	
5	
6	
7	
8.	



# REACH OBSERVATIONS (of 100 m stream length)



# Longitudinal Extent of Riparian Vegetation

Category	Description	Category	Description
None	No trees or shrubs, only exotic grass	es or pasture Occasional	Clumps of tree among exotic grasses and pastures
Isolated/scatter	red :	Semi- contiguous	Cleared patches of trees
Regularly space		Contiguous	Intact tree line
	Evenly spaced trees among exotic gras	ises and pastures	indectree inc

#### Comments

From privious site, Lots of decaying algae as 1 and , Dense musudiall other ser adre (WD)some deal



#### **Site Details**

Site Number	AB2	Site N
Watercourse		Collec
Date (DD/MM/YYYY)	31/1/23	Projec
Time (24 hrs)	(0:30	

Site Name		
Collector (initials)		
Project Code		

Edge/Backwater: Yes- No 🗆 QA/QC Residue Yes 🗆 No 🗆

Rep	No Vials	Collected by	Picked by	Label	Comment
1	(	Jfr	JL	AB2-Edyl	
2				0	
3					
4					
5					

#### Variables

Mean Sample Depth (m)	0.5	Substrate Description (% cover)			
Mean Wetted Width (m)	>100	Bedrock	6	Gravel (2-4 mm)	$\bigcirc$
Method: Gweep		Boulder (>256 mm)		Sand (0.05- 2 mm)	6
Canopy cover (%)	0	Cobble (64-256 mm)	5	Silt/Clay (<0.05 mm)	95
Shading (%)	8	Pebble (4 – 64 mm)	$\bigcirc$		
Snags and LWD (% cover)	· · · · · · · · · · · · · · · · · · ·	Microhabitat Attribu	tes (% cove	r)	
<b>Snags and LWD (% cover)</b> Detritus (leaves & twigs)	10	<b>Microhabitat Attribu</b> Periphyton	tes (% cove	r) Bank overhang veg	$\bigcirc$
	10		tes (% cove	· · · · · · · · · · · · · · · · · · ·	
Detritus (leaves & twigs)	10 2 5	Periphyton	tes (% cover	Bank overhang veg	

Myriquellim + algal



 Bed: Yes ☐ No □ Collected by: [ | ] Picked by: [ | ] No. vials/reps: [ ] QA/QC Residue Yes □ No □

 Type: Riffle □ Run □ Pool (rocky/gravel) □ Pool (sandy/silt) □

Rep	No Vials	Collected by	Picked by	Label	Comment
1		JEI	J(-)	ABZ-BC	
2				,	
3					
4					
5					

#### Variables

Mean Sample Depth (m)	0.75	Substrate Description (% cover)			
Mean Wetted Width (m)	>100	Bedrock		Gravel (2-4 mm)	
Method: Sween		Boulder (>256 mm)		Sand (0.05- 2 mm)	<u> </u>
Canopy cover (%)	0	Cobble (64-256 mm)	~	Silt/Clay (<0.005 mm)	100
Shading (%)	$\mathcal{O}$	Pebble (4 – 64 mm)			
Snags and LWD (% cover)		Microhabitat Attributes (% cover)			
Detritus (leaves & twigs)	9	Periphyton		Bank overhang veg	<u> </u>
Sticks (<2 cm diam)	9	Moss		Trailing bank veg	<u> </u>
Branches (<15 cm diam)		Filamentous algae	10	Blanketing Silt	<u>~</u>
Logs (>15 cm diam)		Macrophytes		Substrate anoxia	 

Hydro**biology** 

pg 1 of 2

#### **Site Details**

Site Number	ABS
Watercourse	
Date (DD/MM/YYYY)	31/1/23
Time (24 hrs)	15:15

Site Name	
Collector (initials):	Project Code:
Drone footage time:	length:

#### Observations

Left Bank land use: Noting / dead	Algae on substrate % cover: 2
Left Bank erosion (%):	Algae in water column % cover: )
Right Bank land use: Nature / deard	Flow level: 🛛 None 🖾 Low 🗆 Moderate 🗆 High 🗆 Flood
Right Bank erosion %: 5	Local catchment erosion %:
Point Source Discharges 🗆 yes 🗹 no	Sediment Odour 🗆 yes 🗹 no, Specify
Sediment Deposits 🗗 None 🛛 Sand 🗆 Silt	Water Odour 🗆 yes 🖵 no, Specify
Bars (bed surface protruding from normal water level) %:	Substrate Description

#### Macrohabitat

Cover	Value (%)
Riffle (%)	0
Run (%)	0
Pool (rocky) (%)	100
Pool (sandy/silt) (%)	0
Dry (%)	0

#### Macrophytes and Algae

#### Microhabitat

Cover	Value (%)
LWD (>15 cm dia)	5
SWD (<15 cm dia)	5
Detritus	10
Periphyton	$\mathcal{O}$
Blanketing Silt	$\mathcal{O}$
Undercut Banks	15

Cover	Value (%)
Bedrock	$\rho$
Boulder (>256 mm)	Õ
Cobble (64-256 mm)	20
Pebble (4-64 mm)	60
Gravel (2-4 mm)	10
Sand (0.05 -2 mm)	6
Silt/Clay (<0.05 mm)	10

Primary Production	in
Macrophyte % [ 80]	Edge % [ 50 ]
	Run % [ ]
	Riffle % [ ]
	Pool (rocky) % [ 5()]
Algae % [ 80 ]	Edge % [ 56 ]
	Run % [ ]
	Riffle % [ ]
	Pool (rocky) % [5 [7]

Macrophyte Botanical Name	Value (%)
1. Ceratophillum	50
2. Hydrella	1.0
3. Ludirgia	11
4. Lemna	16
5 Cyperuh	10
6 Myriochy Mm	(0)
7 0 1 2	
8.	





#### Longitudinal Extent of Riparian Vegetation

Category	Description	Category	Description
None	No trees or shrubs, only exotic grasses or pasture	Occasional clumps	Clumps of tree among exotic grasses and pastures
lsolated/scattered		Semi- contiguous	Cleared patches of trees
Regularly space	Isolated trees or shrubs among exotic grasses or pasture	Contiguous	
	Evenly spaced trees among exotic grasses and pastures		Intact tree line

marrow 5 -0 Cro atre. Casuan gur in noano (or de Ser 9 on frut Hydrobiology Wa

#### **Site Details**

Site Number	ABB
Watercourse	
Date (DD/MM/YYYY)	31/1/23
Time (24 hrs)	19:00

Site Name	
Collector (initials)	
Project Code	

Edge/Backwater: Yes 🗹 No 🗆 QA/QC Residue Yes 🗆 No 🗆

Rep	No Vials	Collected by	Picked by	Label	С	omment
1		JEL	JH	AB8 -1	Edge	
2						
3						
4						
5						

#### Variables

Mean Sample Depth (m)	0.5	Substrate Description (% cover)				
Mean Wetted Width (m)	20m	Bedrock		Gravel (2-4 mm)	Wara	
Method: Gweep		Boulder (>256 mm)		Sand (0.05- 2 mm)		
Canopy cover (%)	$\bigcirc$	Cobble (64-256 mm)		Silt/Clay (<0.05 mm)	100	
Shading (%)	6	Pebble (4 – 64 mm)				
				1		
Snags and LWD (% cover)		Microhabitat Attribut	tes (% covei	r)		
<b>Snags and LWD (% cover)</b> Detritus (leaves & twigs)	10	<b>Microhabitat Attribut</b> Periphyton	tes (% cover	r <b>)</b> Bank overhang veg		
	10 10	· · · · · · · · · · · · · · · · · · ·	tes (% cover			
Detritus (leaves & twigs)	10 10 5	Periphyton	tes (% cover	Bank overhang veg		

Dense macrophytes + algae



Rep	No Vials	Collected by	Picked by	Label	Comment
1		JH	JH	ABS-Bel	
2					
3					
4					
5					

#### Variables

Mean Sample Depth (m)	0.7	Substrate Description (% cover)			
Mean Wetted Width (m)	30	Bedrock	$\mathcal{O}$	Gravel (2-4 mm)	5
Method: Sweep	, <b>z z</b>	Boulder (>256 mm)	0	Sand (0.05- 2 mm)	$\circ$
Canopy cover (%)	$\mathcal{O}$	Cobble (64-256 mm)	40	Silt/Clay (<0.005 mm)	5
Shading (%)	Ó	Pebble (4 – 64 mm)	50		
Snags and LWD (% cover)		Microhabitat Attributes (% cover)			
Detritus (leaves & twigs)	10	Periphyton	C	Bank overhang veg	0
Sticks (<2 cm diam)	0	Moss	$\bigcirc$	Trailing bank veg	Ù
Branches (<15 cm diam)	C	Filamentous algae	20	Blanketing Silt	C
Logs (>15 cm diam)	$\mathcal{O}$	Macrophytes	20	Substrate anoxia	$\overline{O}$

#### Comments

Paka	substrate	habilot	Cargely	algae	
Mains	Inter	/	0 0	U .	
	· · · · · · · · · · · · · · · · · · ·				



. .

1

#### **Site Details**

Site Number	ABG
Watercourse	
Date (DD/MM/YYY)	1/2/23
Time (24 hrs)	11:30

Site Name		
Collector (initials):	Project Code:	
Drone footage time:	length:	
	· · · · ·	

#### Observations

Left Bank land use:	Algae on substrate % cover:
Left Bank erosion (%):	Algae in water column % cover:
Right Bank land use: That	Flow level: 🖸 None 🖻 Low 🗆 Moderate 🗆 High 🗀 Flood
Right Bank erosion %:	Local catchment erosion %:
Point Source Discharges 🗆 yes 🗗 no	Sediment Odour 🛛 yes 🗆 no, Specify
Sediment Deposits 🛛-None 🗖 Sand 🗆 Silt	Water Odour 🛛 yes 🗗 no, Specify
Bars (bed surface protruding from normal water level) %:	Substrate Description

#### Macrohabitat

Cover	Value (%)
Riffle (%)	
Run (%)	
Pool (rocky) (%)	
Pool (sandy/silt) (%)	100
Dry (%)	

Macrophytes and Algae

#### Microhabitat

Cover	Value (%)
LWD (>15 cm dia)	}
SWD (<15 cm dia)	10
Detritus	5
Periphyton	15
Blanketing Silt	$\mathcal{O}$
Undercut Banks	$\bigcirc$

#### pstrate

Cover	Value (%)
Bedrock .	/
Boulder (>256 mm)	20
Cobble (64-256 mm)	20
Pebble (4-64 mm)	~
Gravel (2-4 mm)	_
Sand (0.05 -2 mm)	
Silt/Clay (<0.05 mm)	60

<b>Primary Production</b>	In
Macrophyte % [ () ]	Edge % [   () () ]
	Run % [ ]
	Riffle % [ ]
	Pool (rocky) % [ ]
Algae % [ 🥼 ]	Edge % [ / ( ( ) ]
	Run % [ ]
	Riffle % [ ]
	Pool (rocky) % [ ]

Macrophyte Botanical Name	Value (%)	
1. Replicação	80	
2. ( when h	(0)	
3. Endurana	$(\mathcal{D})$	
4. 🖒		
5		{
6		
7		
8.		



pg 2 of 2



#### Longitudinal Extent of Riparian Vegetation

Category	Description	Category	Description
None	No trees or shrubs, only exotic grasses or pasture	Occasional clumps	Clumps of tree among exotic grasses and pastures
Isolated/scattere	d Isolated trees or shrubs among exotic grasses or pasture	Semi- contiguous	Cleared patches of trees
Regularly space	Evenly spaced trees among exotic grasses and pastures	Contiguous	Intact tree line

ate Set 4 L 65 The 



#### Site Details

Site Number	ABS
Watercourse	
Date (DD/MM/YYY)	
Time (24 hrs)	11:50

Site Name	
Collector (initials)	
Project Code	

Edge/Backwater: Yes D No D QA/QC Residue Yes D No D

Rep	No Vials	Collected by	Picked by	Label	Comment
1		Tfl	TH	ABS-Edg	
2	1				
3					
4					
5	•				

# Variables

Mean Sample Depth (m)	0:79	Substrate Description (% cover)			
Mean Wetted Width (m)	DICTOR	Bedrock	Bedrock		
Method:		Boulder (>256 mm)	10	Sand (0.05- 2 mm)	
Canopy cover (%)	0	Cobble (64-256 mm)	Cobble (64-256 mm) 2 Silt/Clay		70
Shading (%)	$\Box \bigcirc$	Pebble (4 – 64 mm)			
Snags and LWD (% cover)		Microhabitat Attribut	tes (% cove	r)	
Detritus (leaves & twigs)	15	Periphyton	16	Bank overhang veg	$\left( \right)$
Sticks (<2 cm diam)	1()	Moss	C	Trailing bank veg	(
Branches (<15 cm diam)	5	Filamentous algae Blanketing Silt		Blanketing Silt	
Logs (>15 cm diam)		Macrophytes	$\square$	Substrate anoxia	

Dielod	acd cothles	for malou	5: - 1. bd. 1	Consert	bat
266177	Lath (	NN 1997 - 2			· · · ·
•					



Bed: Yes □ No □ Collected by: [ | ] Picked by: [ | ] No. vials/reps: [ ] QA/QC Residue Yes □ No □ Type: Riffle □ Run □ Pool (rocky/gravel) □ Pool (sandy/silt) □

Rep	No Vials	Collected by	Picked by	Label	Comment
1				Shi ba	
2					
3					
4					
5					

#### Variables

Mean Sample Depth (m)		Substrate Description (% cover)		
Mean Wetted Width (m)	100	Bedrock		Gravel (2-4 mm)
Method:		Boulder (>256 mm)	1.	Sand (0.05- 2 mm)
Canopy cover (%)		Cobble (64-256 mm)		Silt/Clay (<0.005 mm)
Shading (%)		Pebble (4 – 64 mm)		
Snags and LWD (% cover)		Microhabitat Attribu	tes (% cove	er)
Detritus (leaves & twigs)	$\sum_{i=1}^{n} C_{i}^{i}$	Periphyton	<i></i>	Bank overhang veg
Sticks (<2 cm diam)	6.10	Moss	×	Trailing bank veg
Branches (<15 cm diam)	<u>,</u>	Filamentous algae		Blanketing Silt
Logs (>15 cm diam)		Macrophytes	_	Substrate anoxia

#### Comments

ſ	i and + 1+ in
Ŀ	



1

pg 1 of 2

#### Site Details

Site Number	ABL
Watercourse	
Date (DD/MM/YYYY)	2/2/23
Time (24 hrs)	9:30

Site Name		
Collector (initials):	Project Code:	
Drone footage time:	length:	

#### Observations

Left Bank land use: Matrie / Cleard	Algae on substrate % cover: S	
Left Bank erosion (%):	Algae in water column % cover: ()	
Right Bank land use: Nature deared	Flow level: 🗹 None 🗆 Low 🗅 Moderate 🗖 High 🗆 Flood	
Right Bank erosion %: —	Local catchment erosion %:	
Point Source Discharges 🗆 yes 🖆 no	Sediment Odour 🛛 yes 🗆 no, Specify <u>Sul plur / Sul plur</u>	
Sediment Deposits 🗗 None 🗖 Sand 🗇 Silt	Water Odour 🖻 yes 🗆 no, Specify	
Bars (bed surface protruding from normal water level) %:	Substrate Description	

#### Macrohabitat

Cover	Value (%)
Riffle (%)	
Run (%)	
Pool (rocky) (%)	
Pool (sandy/silt) (%)	100
Dry (%)	

Macrophytes and Algae

### Microhabitat

Cover	Value (%)
LWD (>15 cm dia)	5
SWD (<15 cm dia)	10
Detritus	10
Periphyton	5
Blanketing Silt	Yes
Undercut Banks	

#### Substrate De

Cover	Value (%)
Bedrock	÷
Boulder (>256 mm)	5
Cobble (64-256 mm)	20
Pebble (4-64 mm)	1.0
Gravel (2-4 mm)	$\mathcal{O}$
Sand (0.05 -2 mm)	$\bigcirc$
Silt/Clay (<0.05 mm)	65

<b>Primary Production</b>	In
Macrophyte % [ ] ]	Edge % [ 50 ]
	Run % [ ]
	Riffle % []
	Pool (rocky) % [ 50 ]
Algae % [ 9 () ]	Edge % [ 5() ]
	Run % [ ]
	Riffle % [ ]
	Pool (rocky) % [ 9 🤈 ]

Macrophyte Botanical Name	Value (%)
1. Phramites	40
2. Ceratoryllin	40
3. Lemna	5
4. Numphoides	5
5 Acolla	5
6 Myrroxhully	
7	
8.	



pg 2 of 2



#### Longitudinal Extent of Riparian Vegetation

Description	Category	Description
No trees or shrubs, only exotic grasses or pasture	Occasional clumps	Clumps of tree among exotic grasses and pastures
Isolated trees or shrubs among exotic grasses or pasture	Semi- contiguous	Cleared patches of trees
······	Contiguous	Intact tree line
	No trees or shrubs, only exotic grasses or pasture	No trees or shrubs, only exotic grasses or pasture     Occasional clumps       Isolated trees or shrubs among exotic grasses or pasture     Semi-contiguous

Shapeestin dominated by of cereter hyll E Gerchall wetland sectiment with anoxic subhum swell, 8 algie Water + Substrate, rak el which last o with thirt laner of organic matter and blocked may effective degrite S vegetation not 50 SAMPS traju Je absorby <u>V</u>



#### **Site Details**

Site Number	AB4
Watercourse	
Date (DD/MM/YYYY)	2/2/23
Time (24 hrs)	9.00

Site Name	
Collector (initials)	
Project Code	

Edge/Backwater: Yes 🗹 No 🗆 QA/QC Residue Yes 🖾 No 🗆

Rep	No Vials	Collected by	Picked by	Label	Comment
1		711	-54	AB-LI Edge	
2		7(-1	JH	AB-41 BeA	
3					
4					
5					

#### Variables

Mean Sample Depth (m)	0.7	Substrate Description	n (% cover)		
Mean Wetted Width (m)	10	Bedrock	C	Gravel (2-4 mm)	
Method: Sweep		Boulder (>256 mm)		Sand (0.05- 2 mm)	
Canopy cover (%)		Cobble (64-256 mm)		Silt/Clay (<0.05 mm)	100
Shading (%)		Pebble (4 – 64 mm)			
		Microhabitat Attributes (% cover)			
Snags and LWD (% cover)		Microhabitat Attribut	tes (% cover	•)	
Snags and LWD (% cover) Detritus (leaves & twigs)	20	<b>Microhabitat Attribut</b> Periphyton	tes (% covei	<b>')</b> Bank overhang veg	$\bigcirc$
	20 0		tes (% cover		0
Detritus (leaves & twigs)	20 0	Periphyton	tes (% covei	Bank overhang veg	0 0 10

defined as Plagmiler can dence 11.1.146 wet NECL - I dominated by Plraguides - 1 peting l. 17-2 Small + Marter NAU necro net =



Bed: Yes □ No □ Collected by: [ | ] Picked by: [ | ] No. vials/reps: [ ] QA/QC Residue Yes □ No □

Type: Riffle 🗆 Run 🗆 Pool (rocky/gravel) 🗆 Pool (sandy/silt) 🗗

Rep	No Vials	Collected by	Picked by	Label	Comment
1	1	-11	-T ( )	AP.L. P.J	
2			a.		
3					
4					
5					

#### Variables

Mean Sample Depth (m)	D.7	Substrate Description	n (% cover)		
Mean Wetted Width (m)		Bedrock		Gravel (2-4 mm)	
Method:		Boulder (>256 mm)	30	Sand (0.05- 2 mm)	
Canopy cover (%)		Cobble (64-256 mm)	30	Silt/Clay (<0.005 mm)	41
Shading (%)		Pebble (4 – 64 mm)			
Snags and LWD (% cover)	}	Microhabitat Attribu	tes (% cove	r)	
Detritus (leaves & twigs)	5	Periphyton		Bank overhang veg	
Sticks (<2 cm diam)	0	Moss	$\mathcal{O}$	Trailing bank veg	
Branches (<15 cm diam)	$\mathcal{O}$	Filamentous algae	10	Blanketing Silt	Ny La
Logs (>15 cm diam)	$\delta$	Macrophytes	10	Substrate anoxia	431

Sample digricale - West	- ret	clogget	with	Grap	
alt As the could		50			
The sheet ,				·····	



pg 1 of 2

#### **Site Details**

Site Number	ABS
Watercourse	
Date (DD/MM/YYYY)	2/2/23
Time (24 hrs)	13:20

Site Name		
Collector (initials):	Project Code:	
Drone footage time:	length:	

#### Observations

Bars (bed surface protruding from normal water level) %:	Substrate Description
Sediment Deposits 🗆 None 🗆 Sand 🗗 Silt	Water Odour 🖻 yes 🗆 no, Specify
Point Source Discharges 🗆 yes 🗹 no	Sediment Odour 🗗 yes 🗆 no, Specify
Right Bank erosion %:	Local catchment erosion %:
Right Bank land use: Nature	Flow level: 🖵 None 🗆 Low 🗆 Moderate 🗆 High 🗆 Flood
Left Bank erosion (%):	Algae in water column % cover:
Left Bank land use: Nature	Algae on substrate % cover:

#### Macrohabitat

Cover	Value (%)
Riffle (%)	
Run (%)	
Pool (rocky) (%)	
Pool (sandy/silt) (%)	100
Dry (%)	

**Macrophytes and Algae** 

#### Microhabitat

Cover	Value (%)
LWD (>15 cm dia)	5
SWD (<15 cm dia)	25
Detritus	30
Periphyton	5
Blanketing Silt	Yes
Undercut Banks	0

#### Substrate Description

Cover	Value (%)
Bedrock	O
Boulder (>256 mm)	$\bigcirc$
Cobble (64-256 mm)	40
Pebble (4-64 mm)	$\mathbf{O}$
Gravel (2-4 mm)	$\bigcirc$
Sand (0.05 -2 mm)	$\bigcirc$
Silt/Clay (<0.05 mm)	66

Primary Production	In
Macrophyte % [ 🌔 ]	Edge % [ ら() ]
	Run % [ ]
	Riffle % [ ]
	Pool (rocky) % [ 5() ]
Algae % [ 9 () ]	Edge % [ 5() ]
	Run % [ ]
	Riffle % [ ]
	Pool (rocky) % [

Macrophyte Botanical Name	Value (%)
1. Versicaria	30
2. Nymphoides indica	10
3. (exation Min	40
4. Ludnagra	5
5 Lemna	5
6 Acolla	10
7	
8.	





Description	Category	Description
No trees or shrubs, only exotic grasses or pasture	Occasional clumps	Clumps of tree among exotic grasses and pasture
Isolated trees or shrubs among exotic grasses or pasture	Semi- contiguous	Cleared patches of trees
·····	Contiguous	·····
De maracht	s/alge	Intact tree line
alenar		
	No trees or shrubs, only exotic grasses or pasture	No trees or shrubs, only exotic grasses or pasture       Occasional clumps         Isolated trees or shrubs among exotic grasses or pasture       Semi-contiguous         Evenly spaced trees among exotic grasses and pastures       Contiguous

.....



#### Site Details

Site Number	ABS
Watercourse	
Date (DD/MM/YYYY)	13:00
Time (24 hrs)	2/2/23

Site Name	
Collector (initials)	
Project Code	

Edge/Backwater: Yes 🗆 No 🗆 QA/QC Residue Yes 🗆 No 🗆

Rep	No Vials	Collected by	Picked by	Label	Comment
1		J+U	511	ABS-tdgg	
2	-				
3		<u>,</u>			
4					
5					

#### Variables

Mean Sample Depth (m)	0,9	Substrate Description	n (% cover)		······································
Mean Wetted Width (m)	50	Bedrock		Gravel (2-4 mm)	
Method:		Boulder (>256 mm)		Sand (0.05- 2 mm)	
Canopy cover (%)	0	Cobble (64-256 mm)		Silt/Clay (<0.05 mm)	100
Shading (%)	$\partial$	Pebble (4 – 64 mm)			
Snags and LWD (% cover)		Microhabitat Attribut	tes (% cove	r)	
Detritus (leaves & twigs)	10	Periphyton		Bank overhang veg	
Sticks (<2 cm diam)	20	Moss		Trailing bank veg	
Branches (<15 cm diam)	5	Filamentous algae	30	Blanketing Silt	
Logs (>15 cm diam)		Macrophytes	30	Substrate anoxia	

#### Comments

ł

selly with organics - sindar to pro sile Sont



Bed: Yes ☑ No □ Collected by: [ | ] Picked by: [ | ] No. vials/reps: [ ] QA/QC Residue Yes □ No □

Type: Riffle 🗆 Run 🗆 Pool (rocky/gravel) 🗆 Pool (sandy/silt) 🗹

Rep	No Vials	Collected by	Picked by	Label	Comment
1		JH	TM	ABS-Be	
2					· ·
3					
4					
5					

#### Variables

Mean Sample Depth (m)	0,5	Substrate Descriptior	ו (% cover)		
Mean Wetted Width (m)	50	Bedrock		Gravel (2-4 mm)	
Method:		Boulder (>256 mm)		Sand (0.05- 2 mm)	
Canopy cover (%)	0	Cobble (64-256 mm)	10	Silt/Clay (<0.005 mm) 9	U .
Shading (%)	$\rightarrow$	Pebble (4 – 64 mm)			
Snags and LWD (% cover)		Microhabitat Attribut	tes (% cove	r)	
Detritus (leaves & twigs)	20	Periphyton	~	Bank overhang veg	
Sticks (<2 cm diam)	20	Moss	<u> </u>	Trailing bank veg	)
Branches (<15 cm diam)		Filamentous algae	10	Blanketing Silt	
Logs (>15 cm diam)		Macrophytes	$(\mathcal{O})$	Substrate anoxia	

Simila to	prev site	



pg 1 of 2

#### **Site Details**

Site Number	AB7
Watercourse	
Date (DD/MM/YYYY)	3/2/22
Time (24 hrs)	9:45

Site Name		
Collector (initials):	Project Code:	
Drone footage time:	length:	

#### Observations

Left Bank land use: Notice / dearch	Algae on substrate % cover:
Left Bank erosion (%):	Algae in water column % cover:
Right Bank land use: Native / dearen	Flow level: 🗹 None 🗆 Low 🗆 Moderate 🗆 High 🗆 Flood
Right Bank erosion %:	Local catchment erosion %:
Point Source Discharges 🗆 yes 🗹 no	Sediment Odour 🗹 yes 🗆 no, Specify . And u /organi
Sediment Deposits 🗆 None 🗆 Sand 🗆 Silt 🛛 🗕	Water Odour I yes I no, Specify And i forgame
Bars (bed surface protruding from normal water level) %:	Substrate Description

#### Macrohabitat

Cover	Value (%)
Riffle (%)	~
Run (%)	~
Pool (rocky) (%)	20
Pool (sandy/silt) (%)	60
Dry (%)	

**Macrophytes and Algae** 

#### Microhabitat

Cover	Value (%)
LWD (>15 cm dia)	0
SWD (<15 cm dia)	5
Detritus	20
Periphyton	5
Blanketing Silt	Yes
Undercut Banks	

#### Substrate Description

Cover	Value (%)
Bedrock	(
Boulder (>256 mm)	
Cobble (64-256 mm)	_
Pebble (4-64 mm)	
Gravel (2-4 mm)	20
Sand (0.05 -2 mm)	
Silt/Clay (<0.05 mm)	80

Primary Production	In
Macrophyte % [ ( 🕖 ]	Edge % [ 90]
	Run % [ ]
	Riffle % [ ]
	Pool (rocky) % [ ] [ ]
Algae % [ /]	Edge % [ / () ]
	Run % [ ]
	Riffle % [ ]
	Pool (rocky) % [ ]

Macrophyte Botanical Name	Value (%)
1. Typha	70
2. Postana	10
3. Austra	10
4. Cenna	10
5	
6	
7	
8.	





#### Longitudinal Extent of Riparian Vegetation

Category	Description	Category	Description
None	No trees or shrubs, only exotic grasses or pasture	Occasional clumps	Clumps of tree among exotic grasses and pastures
lsolated/scattered	Isolated trees or shrubs among exotic grasses or pasture	Semi- contiguous	Cleared patches of trees
Regularly space	·····	Contiguous	
	Evenly spaced trees among exotic grasses and pastures		Intact tree line

cross 1000 225 Un with assiona ana lan most INOX & Smell amba (?) gress (see photo) Water Seament 201 and à / Sytes. boat + whe e-(igh los or. No alley Gr ALS 0 to 0 MUS nacrophyles Hydrobiology

#### **Site Details**

Site Number	AB7
Watercourse	
Date (DD/MM/YYYY)	3/2/23
Time (24 hrs)	10:00

Site Name		
Collector (initials)		
Project Code		

Edge/Backwater: Yes Z No D QA/QC Residue Yes No D

No Vials	Collected by	Picked by	Label	Comment
	JAA	5+1	AB7-ELL	
	No Vials			No Vials     Collected by     Picked by     Label       Jill     Jill     Jill     AB7-Etyp       Image: Strategy in the strategy in the strategy intervention of the strategy interventintervention of the strategy interve

#### Variables

Mean Sample Depth (m)	0.4	Substrate Description	n (% cover)		•··-
Mean Wetted Width (m)	20	Bedrock		Gravel (2-4 mm)	
Method:		Boulder (>256 mm)		Sand (0.05- 2 mm)	
Canopy cover (%)		Cobble (64-256 mm)		Silt/Clay (<0.05 mm)	100
Shading (%)	10	Pebble (4 – 64 mm)	\		
Snags and LWD (% cover)		Microhabitat Attribut	tes (% cove	r)	
<b>Snags and LWD (% cover)</b> Detritus (leaves & twigs)	30	<b>Microhabitat Attribut</b> Periphyton	tes (% cove	<b>r)</b> Bank overhang veg	
	30		tes (% cove		
Detritus (leaves & twigs)	30 0	Periphyton	tes (% cove	Bank overhang veg	- 

ac underned > Pense Typha. Habit Loval yin



 Bed: Yes I No □ Collected by: [ | ] Picked by: [ | ] No. vials/reps: [ ] QA/QC Residue Yes □ No □

 Type: Riffle □ Run □ Pool (rocky/gravel) □ Pool (sandy/silt) □

Rep	No Vials	Collected by	Picked by	Label	Comment
1		J.X.	761	AB-78es	
2					
3					
4					
5					

#### Variables

Mean Sample Depth (m)		Substrate Description (% cover)			
Mean Wetted Width (m)	30	Bedrock	·	Gravel (2-4 mm)	10
Method:		Boulder (>256 mm)		Sand (0.05- 2 mm)	<u> </u>
Canopy cover (%)	67	Cobble (64-256 mm)		Silt/Clay (<0.005 mm)	970
Shading (%)	10	Pebble (4 – 64 mm)			
Snags and LWD (% cover)	· · · · · · · · · · · · · · · · · · ·	Microhabitat Attributes (% cover)			
Detritus (leaves & twigs)	40	Periphyton		Bank overhang veg	<u></u>
Sticks (<2 cm diam)		Moss		Trailing bank veg	
Branches (<15 cm diam)		Filamentous algae	5	Blanketing Silt	
Logs (>15 cm diam)		Macrophytes	10	Substrate anoxia	

Ergen - substrate gravel + organic material
- Ofabitet dirente lan
$\overline{\mathcal{F}}$



pg 1 of 2

#### **Site Details**

Site Number	AB6
Watercourse	
Date (DD/MM/YYYY)	3/2/22
Time (24 hrs)	11:20

Site Name		
Collector (initials):	Project Code:	
Drone footage time:	length:	

#### Observations

Left Bank land use: Walin / deard	Algae on substrate % cover:	
Left Bank erosion (%):	Algae in water column % cover:	
Right Bank land use: Nature ideas	Flow level: None Low D Moderate High D Flood	
Right Bank erosion %:	Local catchment erosion %:	
Point Source Discharges 🗆 yes-🗹 no	Sediment Odour 🗹 yes 🗆 no, Specify 🔜 🧄 🗚 🖉 🕖	
Sediment Deposits 🗹 None 🗀 Sand 🗆 Silt	Water Odour 🗹 yes 🗆 no, Specify 🔜 🖓 🛺 🖓	
Bars (bed surface protruding from normal water level) %:	Substrate Description	

#### Macrohabitat

Cover	Value (%)
Riffle (%)	
Run (%)	-
Pool (rocky) (%)	
Pool (sandy/silt) (%)	100
Dry (%)	/

#### Microhabitat

Cover	Value (%)
LWD (>15 cm dia)	5
SWD (<15 cm dia)	3
Detritus	15
Periphyton	5
Blanketing Silt	
Undercut Banks	10

#### Substrate Description

Cover	Value (%)
Bedrock	and the second s
Boulder (>256 mm)	1977 - 1
Cobble (64-256 mm)	
Pebble (4-64 mm)	5
Gravel (2-4 mm)	$\overline{\mathbf{O}}$
Sand (0.05 -2 mm)	-
Silt/Clay (<0.05 mm)	85

#### **Macrophytes and Algae**

ę.

Primary Production	In
Macrophyte % [ 75 ]	Edge % [ 3/ ]
	Run % [ ]
	Riffle % [ ]
	Pool (rocky) % [ 70 ]
Algae % [ 20 ]	Edge % [ ]
	Run % [ ]
	Riffle % [ ]
	Pool (rocky) % [(0()]

Value (%)
$S_{\underline{C}}$
$\Lambda$
5





#### Longitudinal Extent of Riparian Vegetation

Category	Description	Category	Description
None	No trees or shrubs, only exotic grasses or pasture	Occasional clumps	Clumps of tree among exotic grasses and pastures
lsolated/scattered	Isolated trees or shrubs among exotic grasses or pasture	Semi- contiguous	Cleared patches of trees
Regularly space	······	Contiguous	2
	Evenly spaced trees among exotic grasses and pastures		Intact tree line

#### Comments

DOSL paragrass in channel avon High an orephon with Some Compose with maero phyles ( maint 100/5 notec Cerator C ð Versite wally ri vegeta Som sel inent o ovnell Anst ······ Sides Compa OU mer Hydrobiology Undertu 15

and les with her

#### Site Details

Site Number	AB6	Site Name
Watercourse		Collector (initials)
Date (DD/MM/YYYY)		Project Code
Time (24 hrs)	12:00	

Edge/Backwater: Yes 🖞 No 🗆 QA/QC Residue Yes 🗆 No 🗆

Rep	No Vials	Collected by	Picked by	Label	Comment
1		JH	SFL	ABG-ELy	
2				0	
3					
4					
5					

#### Variables

Mean Sample Depth (m)	0.8	Substrate Descriptio	n (% cover)		
Mean Wetted Width (m)	10	Bedrock		Gravel (2-4 mm)	
Method: SNEep		Boulder (>256 mm)		Sand (0.05- 2 mm)	
Canopy cover (%)	10	Cobble (64-256 mm)		Silt/Clay (<0.05 mm)	100
Shading (%)	10	Pebble (4 – 64 mm)			
Snags and LWD (% cover)		Microhabitat Attributes (% cover)			
Snags and LWD (% cover)		Microhabitat Attribu	tes (% cove	r)	
<b>Snags and LWD (% cover)</b> Detritus (leaves & twigs)	20	<b>Microhabitat Attribu</b> Periphyton	tes (% cove	r) Bank overhang veg	
	20		tes (% cove	· · · · · · · · · · · · · · · · · · ·	15
Detritus (leaves & twigs)	20 20 6	Periphyton	tes (% cove	Bank overhang veg	15

Taken from post with dense ceredophythin, higher habitat duerety them proverted - Induded underest banks + root masses + logs



Bed: Yes No Collected by: [ | ] Picked by: [ | ] No. vials/reps: [ ] QA/QC Residue Yes No Type: Riffle Run Pool (rocky/gravel) Pool (sandy/silt) 

Rep	No Vials	Collected by	Picked by	Label	Comment
1		JH	TH	AB6 - Bet	
2					
3				-	
4					
5					

#### Variables

Mean Sample Depth (m)	0.8	Substrate Description (% cover)			
Mean Wetted Width (m)	10	Bedrock		Gravel (2-4 mm)	
Method:		Boulder (>256 mm)		Sand (0.05- 2 mm)	
Canopy cover (%)	$\mathcal{O}$	Cobble (64-256 mm)		Silt/Clay (<0.005 mm)	100
Shading (%)	$\overline{O}$	Pebble (4 – 64 mm)			
Snags and LWD (% cover)		Microhabitat Attributes (% cover)			
Detritus (leaves & twigs)	20	Periphyton	1 de	Bank overhang veg	$\hat{\Box}$
Sticks (<2 cm diam)	5	Moss	O	Trailing bank veg	
Branches (<15 cm diam)	5	Filamentous algae	0	Blanketing Silt	
Logs (>15 cm diam)	0	Macrophytes	10	Substrate anoxia	Yel

Boggy - lots of	Jebrs + Lecanna VCox.	
I alrea como and	w/ dense constraindlen	
Strate		



pg 1 of 2

#### **Site Details**

Site Number	ABI
Watercourse	
Date (DD/MM/YYYY)	3/2/23
Time (24 hrs)	16:00

Site Name		
Collector (initials):	Project Code:	
Drone footage time:	length:	

#### Observations

Left Bank land use: Not me	Algae on substrate % cover:	
Left Bank erosion (%):	Algae in water column % cover:	
Right Bank land use: Nathre	Flow level: 🛛 None 🗆 Low 🗆 Moderate 🗆 High 🗆 Flood	
Right Bank erosion %: —	Local catchment erosion %:	
Point Source Discharges 🗆 yes 🗹 no 🔗	Sediment Odour 🗆 yes 🖬 no, Specify	
Sediment Deposits 🖵 None 🗇 Sand 🗆 Silt	Water Odour 🛛 yes 🖾 no, Specify	
Bars (bed surface protruding from normal water level) %:	Substrate Description	

#### Macrohabitat

Cover	Value (%)
Riffle (%)	<
Run (%)	
Pool (rocky) (%)	105
Pool (sandy/silt) (%)	
Dry (%)	

Macrophytes and Algae

#### Microhabitat

Cover	Value (%)
LWD (>15 cm dia)	10
SWD (<15 cm dia)	10
Detritus	10
Periphyton	10
Blanketing Silt	
Undercut Banks	20

#### ubstrate Descrip

Cover	Value (%)
Bedrock	10
Boulder (>256 mm)	
Cobble (64-256 mm)	20
Pebble (4-64 mm)	20
Gravel (2-4 mm)	10
Sand (0.05 -2 mm)	сл
Silt/Clay (<0.05 mm)	2-1-1- 2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1

Primary Production	In
Macrophyte % [ 46]	Edge % [ 50 ]
	Run % [ ]
	Riffle % [ ]
-	Pool (rocky) % [ 5() ]
Algae % [ 2 🔿	Edge % [   () ]
I.	Run % [ ]
	Riffle % [ ]
	Pool (rocky) % [   6 ]

Macrophyte Botanical Name	Value (%)
1. Tala	
2. Judinará	
3. Cuperis	· · ·
4. Muriohullum	2.0
5 Ceratopixlim	
6 Acoller	
7 Lemoner	
8.	





Longitudinal Extent of Riparian Vegetation

Category	Description	Category	Description
None	No trees or shrubs, only exotic grasses or pasture	Occasional clumps	Clumps of tree among exotic grasses and pastures
lsolated/scattered	~~~~~	Semi- contiguous	Cleared patches of trees
Regularly space	Isolated trees or shrubs among exotic grasses or pasture	Contiguous	
	Evenly spaced trees among exotic grasses and pastures		Intact tree line

abota T le la P star P phi tes nau. ater hot. much ove b debr 10 sh 6 Stark Hydrobiology

#### **Site Details**

Site Number	AB-1
Watercourse	
Date (DD/MM/YYYY)	3/2/23
Time (24 hrs)	16:00

Site Name	
Collector (initials)	
Project Code	

Edge/Backwater: Yes 🗹 No 🗆 QA/QC Residue Yes 🗆 No 🗆

Rep	No Vials	Collected by	Picked by	Label	Comment
1		JH	711	ABI-EN	
2				Ū.	
3					
4					
5					

#### Variables

Mean Sample Depth (m)	0.4	Substrate Description (% cover)					
Mean Wetted Width (m)	30	Bedrock		Gravel (2-4 mm)	~		
Method: Sweep		Boulder (>256 mm)		Sand (0.05- 2 mm)			
Canopy cover (%)		Cobble (64-256 mm)	80	Silt/Clay (<0.05 mm)	$ 0\rangle$		
Shading (%)		Pebble (4 – 64 mm)	01				
Snags and LWD (% cover)		Microhabitat Attributes (% cover)					
Detritus (leaves & twigs)		Periphyton	10	Bank overhang veg			
Sticks (<2 cm diam)		Moss		Trailing bank veg	30		
Branches (<15 cm diam)		Filamentous algae	5	Blanketing Silt			
Logs (>15 cm diam)		Macrophytes Z()		Substrate anoxia			

Edge og mærophytes + submerged grasses / sianting veg Not wich debjis



Bed: Yes ☐ No □ Collected by: [ | ] Picked by: [ | ] No. vials/reps: [ ] QA/QC Residue Yes □ No □ Type: Riffle □ Run □ Pool (rocky/gravel) ⊡ Pool (sandy/silt) □

Rep	No Vials	Collected by	Picked by	Label	Comment
1	;	JH	541	ABI-Bel	
2					
3					
4					,
5					

#### Variables

Mean Sample Depth (m)		Substrate Description (% cover)					
Mean Wetted Width (m)		Bedrock	Sedrock				
Method:		Boulder (>256 mm)	10	Sand (0.05- 2 mm)			
Canopy cover (%)		Cobble (64-256 mm)	30	Silt/Clay (<0.005 mm)	20		
Shading (%)		Pebble (4 – 64 mm)	40				
Snags and LWD (% cover)		Microhabitat Attributes (% cover)					
Detritus (leaves & twigs)	$  \rangle$	Periphyton	5	Bank overhang veg			
Sticks (<2 cm diam)		Moss		Trailing bank veg			
Branches (<15 cm diam)		Filamentous algae	Filamentous algae 5				
Logs (>15 cm diam)		Macrophytes	20	Substrate anoxia			

In A / Inal.	h amound	. racky	
. J.	) /	7	



# APPENDIX D. WATER QUALITY DATA



Site	Sample date	Temp (°C)	Dissolved Oxygen (%)	Dissolved Oxygen (mg/L)	Electrical Conductivity (µS/cm)	рН	
AB9	15/09/2022	20.9	67.4	6.01	547	8.03	
AB1	28/02/2023	29.3	67.7	5.2	377	8.65 8.87	
AB2	27/02/2023	31	72.8	5.34	454		
AB3	28/02/2023	31	72.8	5.34	454	8.87	
AB4	28/02/2023	31.5	50.6	3.67	2631	8.25	
AB5	7/03/2023	30.4	35.7	2.68	215	7.74	
AB6	no result						
AB7	26/10/2022 2	24	17.40%	1.46	720	6.78	
AB8	6/03/2023	34.2	29.7	2.09	672	7.6	

Table 5-8 In-situ water quality data provided by client.

Site AB6 was dry during previous attempts for water sampling

# APPENDIX E. TABULATED DATA



Sample number				AB1-AA-WB	AB1-CS-WB	AB1-NH-EP	AB1-MS-WB	AB1-PR-EP	AB1-CQ-EP	AB1-OL-EP	AB1-TT-EP	AB1-MA-EP
Date sampled				4/02/2023	4/02/2023	4/02/2023	4/02/2023	2/02/2023	4/02/2023	4/02/2023	4/02/2023	4/02/2023
Species				Ambassis agassizii	Craterocephalus stercusmuscarum	Neosilurus hyrtlii	Macrobrachium sp.	Porochilus rendahli	Cherax quadricarinatus	Oxyeleotris lineolata	Tandanus tandanus	Macquaria ambigua
Common name				Agassiz's perchlet	Flyspecked Hardyhead	Hyrtl's Catfish	Freshwater prawn	Rendahl's Catfish	Crayfish	Sleepy cod	Eeltail Catfish	Yellowbelly
Site				AB1	AB1	AB1	AB1	AB1	AB1	AB1	AB1	AB1
System				Callide Creek U/S	Callide Creek U/S	Callide Creek U/S	Callide Creek U/S	Callide Creek U/S	Callide Creek U/S	Callide Creek U/S	Callide Creek U/S	Callide Creek U/S
Condition				Control	Control	Control	Control	Control	Control	Control	Control	Control
Assessment				Ecological health	Ecological health	Human health	Ecological health	Human health	Human health	Human health	Human health	Human health
Tissue analysed				Whole body	Whole body	Edible portion	Whole body	Edible portion	Edible portion	Edible portion	Edible portion	Edible portion
	Unit	LOR	Screening criteria									
Weight	g	0.1	-	7.9	13	141	3.4	7.7	63	535	238	1150
Arsenic	mg/kg	0.0 5	-	0.2	0.21	0.07	0.55	0.05	0.5	0.06	0.12	0.06
Barium	mg/kg	0.1	-	6.1	7.4	<0.1	30.4	0.7	47.5	<0.1	0.2	<0.1
Boron	mg/kg	5	-	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chromium	mg/kg	0.0 5	-	0.79	0.18	<0.05	0.15	2.44	2.41	<0.05	<0.05	<0.05
Copper	mg/kg	0.1	20/2*	1.2	0.6	0.3	23.8	1.2	15.7	1.1	0.7	0.3
Molybdenum	mg/kg	0.0 5	-	0.1	<0.05	<0.05	<0.05	0.35	0.33	<0.05	<0.05	<0.05
Selenium	mg/kg	0.0 5	1/2*	0.25	0.17	0.22	0.22	0.16	0.07	0.17	0.26	0.44
Strontium	mg/kg	0.1	-	95.6	93.6	0.8	121	54.3	134	0.6	1.9	0.5
Uranium	mg/kg	0.0 1	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01

Sample number				AB1-AA-WB	AB1-CS-WB	AB1-NH-EP	AB1-MS-WB	AB1-PR-EP	AB1-CQ-EP	AB1-OL-EP	AB1-TT-EP	AB1-MA-EP
Vanadium	mg/kg	0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Zinc	mg/kg	0.5	40/15*	48.6	66.7	12.4	44.5	39.5	15.3	7.2	6.1	10.1
Perfluorobutane sulfonic acid (PFBS)	µg/kg	1	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Perfluoropentane sulfonic acid (PFPeS)	µg/kg	1	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Perfluorohexane sulfonic acid (PFHxS)	µg/kg	1	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Perfluoroheptane sulfonic acid (PFHpS)	µg/kg	1	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Perfluorooctane sulfonic acid (PFOS) - Linear	µg/kg	1	-	<1	<1	<1	<1	2	<1	<1	<1	<1
Perfluorooctane sulfonic acid (PFOS) - Branched	µg/kg	1	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Perfluorooctane sulfonic acid (PFOS)	µg/kg	1	-	<1	<1	<1	<1	2	<1	<1	<1	<1
Perfluorodecane sulfonic acid (PFDS)	µg/kg	2	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
Perfluorobutanoic acid (PFBA)	µg/kg	5	-	<5	<5	<5	<5	<5	<5	<5	<5	<5
Perfluoropentanoic acid (PFPeA)	µg/kg	2	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
Perfluorohexanoic acid (PFHxA)	µg/kg	1	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Perfluoroheptanoic acid (PFHpA)	µg/kg	1	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Perfluorooctanoic acid (PFOA)	µg/kg	1	11.2**	<1	<1	<1	<1	<1	<1	<1	<1	<1
Perfluorononanoic acid (PFNA)	µg/kg	1	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Perfluorodecanoic acid (PFDA)	µg/kg	1	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Perfluoroundecanoic acid (PFUnDA)	µg/kg	1	-	<1	<1	<1	<1	<1	<1	<1	<1	<1

Sample number				AB1-AA-WB	AB1-CS-WB	AB1-NH-EP	AB1-MS-WB	AB1-PR-EP	AB1-CQ-EP	AB1-OL-EP	AB1-TT-EP	AB1-MA-EP
Perfluorododecanoic acid (PFDoDA)	µg/kg	2	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
Perfluorotridecanoic acid (PFTrDA)	µg/kg	2	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
Perfluorotetradecanoic acid (PFTeDA)	µg/kg	2	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
Perfluorooctane sulfonamide (FOSA)	µg/kg	5	-	<5	<5	<5	<5	<5	<5	<5	<5	<5
N-Methyl perfluorooctane sulfonamide (MeFOSA)	µg/kg	5	-	<5	<5	<5	<5	<5	<5	<5	<5	<5
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	µg/kg	2	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	µg/kg	2	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	µg/kg	2	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	µg/kg	1		<1	<1	<1	<1	<1	<1	<1	<1	<1
N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	µg/kg	1		<1	<1	<1	<1	<1	<1	<1	<1	<1
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	µg/kg	2		<2	<2	<2	<2	<2	<2	<2	<2	<2
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	µg/kg	2		<2	<2	<2	<2	<2	<2	<2	<2	<2
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	µg/kg	2	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	µg/kg	2	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
Sum of PFAS	µg/kg	1	-	<1	<1	<1	<1	2	<1	<1	<1	<1
Sum of PFHxS and PFOS	µg/kg	1	1.4/4.6/8.2** *	<1	<1	<1	<1	2	<1	<1	<1	<1
Lithium	mg/kg	0.2	-	<0.2	<0.2	<0.2		<0.2	<0.2	<0.2	<0.2	<0.2
Thorium	mg/kg	0.0 1	-	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	<0.01	<0.01

Sample number				AB1-AA-WB	AB1-CS-WB	AB1-NH-EP	AB1-MS-WB	AB1-PR-EP	AB1-CQ-EP	AB1-OL-EP	AB1-TT-EP	AB1-MA-EP
Fluoride	mg/kg	0.2	-			<0.2				<0.2	<0.2	<0.2

Sample number				AB2-LC-EP	AB2-CS-WB	AB2-MP-WB	AB2-CQ-EP	AB2-CQ-RB	AB2-TT-EP	AB3-LC-EP	AB3-LC-RB	AB3-AA-WB
Date sampled				30/01/2023	31/01/2023	31/01/2023	31/01/2023	30/01/2023	30/01/2023	30/01/2023	30/01/2023	31/01/2023
Species				Lates calcarifer	Craterocephalus stercusmuscarum	Macrobrachium sp.	Cherax quadricarinatus	Cherax quadricarinatus	Tandanus tandanus	Lates calcarifer	Lates calcarifer	Ambassis agassizii
Common name				Barramundi	Flyspecked Hardyhead	Freshwater prawn	Crayfish	Crayfish	Eeltail Catfish	Barramundi	Barramundi	Agassiz's perchlet
Site				AB2	AB2	AB2	AB2	AB2	AB2	AB3	AB3	AB3
System				Lake Callide	Lake Callide	Lake Callide	Lake Callide	Lake Callide	Lake Callide	Lake Callide	Lake Callide	Lake Callide
Condition				Test	Test	Test	Test	Test	Test	Test	Test	Test
Assessment				Human health	Ecological health	Ecological health	Human health	Human health	Human health	Human health	Human health	Ecological health
Tissue analysed				Edible portion	Whole body	Whole body	Edible portion	Rest of body	Edible portion	Edible portion	Rest of body	Whole body
	Unit	Unit LOR Screening criteria										
Weight	g	0.1	-	11200	6	1.3	10	10	85	10600	10600	8
Arsenic	mg/kg	0.05	-	0.08	0.22		0.28	0.27	0.16	0.09	0.06	0.16
Barium	mg/kg	0.1	-	0.1	5.5		2.3	2.1	0.7	<0.1	<0.1	3.8
Boron	mg/kg	5	-	<5	<5		<5	<5	<5	<5	<5	<5
Chromium	mg/kg	0.05	-	<0.05	0.26		0.13	0.14	6.85	<0.05	<0.05	0.22
Copper	mg/kg	0.1	20/2*	0.4	0.6		8.1	7.1	1.6	0.4	0.3	0.8
Molybdenum	mg/kg	0.05	-	<0.05	<0.05		<0.05	<0.05	0.77	<0.05	<0.05	0.05
Selenium	mg/kg	0.05	1/2*	0.16	0.14		0.08	0.08	0.15	0.2	0.18	0.26
Strontium	mg/kg	0.1	-	1.1	104		24.9	24.5	2	0.9	0.6	93.5
Uranium	mg/kg	0.01	-	<0.01	<0.01		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Vanadium	mg/kg	0.5	-	<0.5	<0.5		<0.5	<0.5	1.8	<0.5	<0.5	<0.5
Zinc	mg/kg	0.5	40/15*	5.6	82.6		18.8	16.9	6.7	5.7	5.1	41.3
Perfluorobutane sulfonic acid (PFBS)	µg/kg	1	-	<1	<1	<1	<1	<1	<1	<1	<1	<1

Sample number				AB2-LC-EP	AB2-CS-WB	AB2-MP-WB	AB2-CQ-EP	AB2-CQ-RB	AB2-TT-EP	AB3-LC-EP	AB3-LC-RB	AB3-AA-WB
Perfluoropentane sulfonic acid (PFPeS)	µg/kg	1	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Perfluorohexane sulfonic acid (PFHxS)	µg/kg	1	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Perfluoroheptane sulfonic acid (PFHpS)	µg/kg	1	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Perfluorooctane sulfonic acid (PFOS) - Linear	µg/kg	1		<1	<1	<1	<1	<1	<1	<1	<1	<1
Perfluorooctane sulfonic acid (PFOS) - Branched	µg/kg	1	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Perfluorooctane sulfonic acid (PFOS)	µg/kg	1	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Perfluorodecane sulfonic acid (PFDS)	µg/kg	2	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
Perfluorobutanoic acid (PFBA)	µg/kg	5	-	<5	<5	<5	<5	<5	<5	<5	<5	<5
Perfluoropentanoic acid (PFPeA)	µg/kg	2	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
Perfluorohexanoic acid (PFHxA)	µg/kg	1	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Perfluoroheptanoic acid (PFHpA)	µg/kg	1	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Perfluorooctanoic acid (PFOA)	µg/kg	1	11.6**	<1	<1	<1	<1	<1	<1	<1	<1	<1
Perfluorononanoic acid (PFNA)	µg/kg	1	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Perfluorodecanoic acid (PFDA)	µg/kg	1	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Perfluoroundecanoic acid (PFUnDA)	µg/kg	1	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Perfluorododecanoic acid (PFDoDA)	µg/kg	2	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
Perfluorotridecanoic acid (PFTrDA)	µg/kg	2	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
Perfluorotetradecanoic acid (PFTeDA)	µg/kg	2	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
Perfluorooctane sulfonamide (FOSA)	µg/kg	5	-	<5	<5	<5	<5	<5	<5	<5	<5	<5
N-Methyl perfluorooctane sulfonamide (MeFOSA)	µg/kg	5	-	<5	<5	<5	<5	<5	<5	<5	<5	<5
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	µg/kg	2	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	µg/kg	2	-	<2	<2	<2	<2	<2	<2	<2	<2	<2

www.hydrobiology.biz

Sample number				AB2-LC-EP	AB2-CS-WB	AB2-MP-WB	AB2-CQ-EP	AB2-CQ-RB	AB2-TT-EP	AB3-LC-EP	AB3-LC-RB	AB3-AA-WB
N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	µg/kg	2	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	µg/kg	1	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	µg/kg	1	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	µg/kg	2	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	µg/kg	2	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	µg/kg	2	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	µg/kg	2	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
Sum of PFAS	µg/kg	1	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Sum of PFHxS and PFOS	µg/kg	1	1.4/4.6/8.2***	<1	<1	<1	<1	<1	<1	<1	<1	<1
Lithium	mg/kg	0.2	-	<0.2	<0.2		<0.2		<0.2	<0.2		<0.2
Thorium	mg/kg	0.01	-	0.018	<0.01		<0.01		0.022	<0.01		<0.01
Fluoride	mg/kg	0.2	-	<0.2					<0.2	<0.2		

Sample number				AB3-CS-WB	AB3-MS-WB	AB3-CQ-EP	AB4-AT-WB	AB4-AA-WB	AB4-CS-WB	AB4-PR-EP	AB4-OL-EP	AB4-TT-EP
Date sampled				31/01/2023	31/01/2023	31/01/2023	2/02/2023	2/02/2023	2/02/2023	2/02/2023	2/02/2023	2/02/2023
Species				Craterocephalus stercusmuscarum	Macrobrachium sp.	Cherax quadricarinatus	Atyidae	Ambassis agassizii	Craterocephalus stercusmuscarum	Porochilus rendahli	Oxyeleotris lineolata	Tandanus tandanus
Common name				Flyspecked Hardyhead	Freshwater prawn	Crayfish	Freshwater shrimp	Agassiz's perchlet	Flyspecked Hardyhead	Rendahl's Catfish	Sleepy cod	Eeltail Catfish
Site				AB3	AB3	AB3	AB4	AB4	AB4	AB4	AB4	AB4
System				Lake Callide	Lake Callide	Lake Callide	Callide Creek D/S	Callide Creek D/S	Callide Creek D/S	Callide Creek D/S	Callide Creek D/S	Callide Creek D/S
Condition				Test	Test	Test	Test	Test	Test	Test	Test	Test
Assessment				Ecological health	Ecological health	Human health	Ecological health	Ecological health	Ecological health	Human health	Human health	Human health
Tissue analysed				Whole body	Whole body	Edible portion	Whole body	Whole body	Whole body	Edible portion	Edible portion	Edible portion
	Unit	LOR	Screening criteria									
Weight	g	0.1	-	27	16	121	1.9	3	2.2	2.4	5.1	112
Arsenic	mg/kg	0.05	-	0.22	0.42	0.4			0.51			0.16
Barium	mg/kg	0.1	-	2.4	4.4	1.3			12.9			<0.1
Boron	mg/kg	5	-	<5	<5	<5			<5			<5
Chromium	mg/kg	0.05	-	1.4	0.45	0.22			0.12			<0.05
Copper	mg/kg	0.1	20/2*	0.6	17.6	13			0.7			0.2
Molybdenum	mg/kg	0.05	-	0.18	0.07	0.05			<0.05			<0.05
Selenium	mg/kg	0.05	1/2*	0.2	0.18	0.09			0.18			0.12
Strontium	mg/kg	0.1	-	52.1	106	17.6			109			0.5
Uranium	mg/kg	0.01	-	<0.01	<0.01	<0.01			<0.01			<0.01
Vanadium	mg/kg	0.5	-	<0.5	<0.5	<0.5			<0.5			<0.5
Zinc	mg/kg	0.5	40/15*	53.8	24.6	20			96.5			5.2
Perfluorobutane sulfonic acid (PFBS)	µg/kg	1	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Perfluoropentane sulfonic acid (PFPeS)	µg/kg	1	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Perfluorohexane sulfonic acid (PFHxS)	µg/kg	1	-	<1	<1	<1	<1	<1	<1	<1	<1	1

Sample number				AB3-CS-WB	AB3-MS-WB	AB3-CQ-EP	AB4-AT-WB	AB4-AA-WB	AB4-CS-WB	AB4-PR-EP	AB4-OL-EP	AB4-TT-EP
Perfluoroheptane sulfonic acid (PFHpS)	µg/kg	1	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Perfluorooctane sulfonic acid (PFOS) - Linear	µg/kg	1	-	<1	<1	<1	3	7	<1	14	1	3
Perfluorooctane sulfonic acid (PFOS) - Branched	µg/kg	1	-	<1	<1	<1	<1	3	<1	2	<1	1
Perfluorooctane sulfonic acid (PFOS)	µg/kg	1	-	<1	<1	<1	3	10	<1	16	1	4
Perfluorodecane sulfonic acid (PFDS)	µg/kg	2	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
Perfluorobutanoic acid (PFBA)	µg/kg	5	-	<5	<5	<5	<5	<5	<5	<5	<5	<5
Perfluoropentanoic acid (PFPeA)	µg/kg	2	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
Perfluorohexanoic acid (PFHxA)	µg/kg	1	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Perfluoroheptanoic acid (PFHpA)	µg/kg	1	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Perfluorooctanoic acid (PFOA)	µg/kg	1	11.2**	<1	<1	<1	<1	<1	<1	<1	<1	<1
Perfluorononanoic acid (PFNA)	µg/kg	1	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Perfluorodecanoic acid (PFDA)	µg/kg	1	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Perfluoroundecanoic acid (PFUnDA)	µg/kg	1	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Perfluorododecanoic acid (PFDoDA)	µg/kg	2	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
Perfluorotridecanoic acid (PFTrDA)	µg/kg	2	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
Perfluorotetradecanoic acid (PFTeDA)	µg/kg	2	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
Perfluorooctane sulfonamide (FOSA)	µg/kg	5	-	<5	<5	<5	<5	<5	<5	<5	<5	<5
N-Methyl perfluorooctane sulfonamide (MeFOSA)	µg/kg	5	-	<5	<5	<5	<5	<5	<5	<5	<5	<5
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	µg/kg	2	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	µg/kg	2	-	<2	<2	<2	<2	<2	<2	<2	<2	<2

Sample number				AB3-CS-WB	AB3-MS-WB	AB3-CQ-EP	AB4-AT-WB	AB4-AA-WB	AB4-CS-WB	AB4-PR-EP	AB4-OL-EP	AB4-TT-EP
N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	µg/kg	2	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	µg/kg	1	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	µg/kg	1	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	µg/kg	2	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	µg/kg	2	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	µg/kg	2	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	µg/kg	2	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
Sum of PFAS	µg/kg	1	-	<1	<1	<1	3	10	<1	16	1	5
Sum of PFHxS and PFOS	µg/kg	1	1.4/4.6/8.2** *	<1	<1	<1	3	10	<1	16	1	5
Lithium	mg/kg	0.2	-	<0.2	<0.2	<0.2					<0.2	<0.2
Thorium	mg/kg	0.01	-	<0.01	<0.01	<0.01					<0.01	<0.01
Fluoride	mg/kg	0.2	-			6.3						<0.2

Sample number				AB5-AA-WB	AB5-PR-EP	AB7-AT-WB	AB7-AA-WB	AB7-CS-WB	AB8-AA-WB	AB8-CS-WB	AB8-NH-EP	AB8-MA-EP
Date sampled				2/02/2023	2/02/2023	3/02/2023	3/02/2023	3/02/2023	1/02/2023	1/02/2023	1/02/2023	1/02/2023
Species				Ambassis agassizii	Porochilus rendahli	Atyidae	Ambassis agassizii	Craterocephalus stercusmuscarum	Ambassis agassizii	Craterocephalus stercusmuscarum	Neosilurus hyrtlii	Macquaria ambigua
Common name				Agassiz's perchlet	Rendahl's Catfish	Freshwater shrimp	Agassiz's perchlet	Flyspecked Hardyhead	Agassiz's perchlet	Flyspecked Hardyhead	Hyrtl's Catfish	Yellowbelly
Site				AB5	AB5	AB7	AB7	AB7	AB8	AB8	AB8	AB8
System				Callide Creek D/S	Callide Creek D/S	Callide Creek D/S	Callide Creek D/S	Callide Creek D/S	Callide Creek D/S	Callide Creek D/S	Callide Creek D/S	Callide Creek D/S
Condition				Test	Test	Test	Test	Test	Test	Test	Test	Test
Assessment				Ecological health	Human health	Ecological health	Ecological health	Ecological health	Ecological health	Ecological health	Human health	Human health
Tissue analysed				Whole body	Edible portion	Whole body	Whole body	Whole body	Whole body	Whole body	Edible portion	Edible portion
	Unit	LOR	Screening criteria									
Weight	g	0.1	-	0.9	39	1.2	1.4	0.6	15	17	13	154
Arsenic	mg/k g	0.0 5	-		0.06				0.15	0.2	<0.05	0.06
Barium	mg/k g	0.1	-		1.2				6	5.6	0.3	1
Boron	mg/k g	5	-		<5				<5	<5	<5	<5
Chromium	mg/k g	0.0 5	-		1.76				0.48	0.25	<0.05	<0.05
Copper	mg/k g	0.1	20/2*		1				0.6	0.5	0.3	0.4
Molybdenum	mg/k g	0.0 5	-		0.24				0.09	0.05	<0.05	<0.05
Selenium	mg/k g	0.0 5	1/2*		0.1				0.13	0.11	0.21	0.52
Strontium	mg/k g	0.1	-		55.5				82.6	79.6	7.6	27
Uranium	mg/k g		-		<0.01				<0.01	<0.01	<0.01	<0.01
Vanadium	mg/k g	0.5	-		<0.5				<0.5	<0.5	<0.5	<0.5

Sample number				AB5-AA-WB	AB5-PR-EP	AB7-AT-WB	AB7-AA-WB	AB7-CS-WB	AB8-AA-WB	AB8-CS-WB	AB8-NH-EP	AB8-MA-EP
Zinc	mg/k g	0.5	40/15*		49.2				40.2	50	14.1	9.8
Perfluorobutane sulfonic acid (PFBS)	µg/kg	1	-	<1	<1	<1	<1	<2	<1	<1	<1	<1
Perfluoropentane sulfonic acid (PFPeS)	µg/kg	1	-	<1	<1	<1	<1	<2	<1	<1	<1	<1
Perfluorohexane sulfonic acid (PFHxS)	µg/kg	1	-	<1	<1	<1	<1	<2	<1	<1	<1	<1
Perfluoroheptane sulfonic acid (PFHpS)	µg/kg	1	-	<1	<1	<1	<1	<2	<1	<1	<1	<1
Perfluorooctane sulfonic acid (PFOS) - Linear	µg/kg	1	-	35	42	28	66	30	82	64	7	4
Perfluorooctane sulfonic acid (PFOS) - Branched	µg/kg	1	-	5	2	3	18	10	7	4	1	1
Perfluorooctane sulfonic acid (PFOS)	µg/kg	1	-	40	44	31	84	40	89	68	8	5
Perfluorodecane sulfonic acid (PFDS)	µg/kg	2	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
Perfluorobutanoic acid (PFBA)	µg/kg	5	-	<5	<5	<5	<5	<5	<5	<5	<5	<5
Perfluoropentanoic acid (PFPeA)	µg/kg	2	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
Perfluorohexanoic acid (PFHxA)	µg/kg	1	-	<1	<1	<1	<1	<2	<1	<1	<1	<1
Perfluoroheptanoic acid (PFHpA)	µg/kg	1	-	<1	<1	<1	<1	<2	<1	<1	<1	<1
Perfluorooctanoic acid (PFOA)	µg/kg	1	11.2**	<1	<1	<1	<1	<2	<1	<1	<1	<1
Perfluorononanoic acid (PFNA)	µg/kg	1	-	<1	<1	<1	<1	<2	<1	<1	<1	<1
Perfluorodecanoic acid (PFDA)	µg/kg	1	-	<1	<1	<1	<1	<2	<1	<1	<1	<1
Perfluoroundecanoic acid (PFUnDA)	µg/kg	1	-	<1	<1	<1	<1	<2	<1	<1	<1	<1
Perfluorododecanoic acid (PFDoDA)	µg/kg	2	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
Perfluorotridecanoic acid (PFTrDA)	µg/kg	2	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
Perfluorotetradecanoic acid (PFTeDA)	µg/kg	2	-	<2	<2	<2	<2	<6	<2	<2	<2	<2

Sample number				AB5-AA-WB	AB5-PR-EP	AB7-AT-WB	AB7-AA-WB	AB7-CS-WB	AB8-AA-WB	AB8-CS-WB	AB8-NH-EP	AB8-MA-EP
Perfluorooctane sulfonamide (FOSA)	µg/kg	5	-	<5	<5	<5	<5	<5	<5	<5	<5	<5
N-Methyl perfluorooctane sulfonamide (MeFOSA)	µg/kg	5	-	<5	<5	<5	<5	<6	<5	<5	<5	<5
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	µg/kg	2	-	<2	<2	<2	<2	<6	<2	<2	<2	<2
N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	µg/kg	2	-	<2	<2	<2	<2	<6	<2	<2	<2	<2
N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	µg/kg	2	-	<2	<2	<2	<2	<6	<2	<2	<2	<2
N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	µg/kg	1	-	<1	<1	<1	<1	<2	<1	<1	<1	<1
N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	µg/kg	1	-	<1	<1	<1	<1	<2	<1	<1	<1	<1
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	µg/kg	2	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	µg/kg	2	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	µg/kg	2	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	µg/kg	2	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
Sum of PFAS	µg/kg	1	-	40	44	31	84	40	89	68	8	5
Sum of PFHxS and PFOS	µg/kg	1	1.4/4.6/8.2** *	40	44	31	84	40	89	68	8	5
Lithium	mg/k g	0.2	-		<0.2				<0.2	<0.2	<0.2	<0.2
Thorium	mg/k g	0.0 1	-		<0.01				<0.01	<0.01	<0.01	<0.01
Fluoride	mg/k g	0.2	-									3.5

Sample number				AB8-MA-RB	AB9-AA-WB	AB9-NH-EP	AB9-MS-WB	AB9-TT-EP	AB2-LC-DU
Date sampled				30/01/2023	1/02/2023	1/02/2023	1/02/2023	1/02/2023	30/01/2023
Species				Macquaria ambigua	Ambassis agassizii	Neosilurus hyrtlii	Macrobrachium sp.	Tandanus tandanus	Lates calcarif
Common name				Yellowbelly	Agassiz's perchlet	Hyrtl's Catfish	Freshwater prawn	Eeltail Catfish	Barramundi
Site				AB8	AB9	AB9	AB9	AB9	AB2
System				Callide Creek D/S	Lake Kroombit	Lake Kroombit	Lake Kroombit	Lake Kroombit	Lake Callide
Condition				Test	Reference	Reference	Reference	Reference	Test
Assessment				Human health	Ecological health	Human health	Ecological health	Human health	Human healt
Tissue analysed				Rest of body	Whole body	Edible portion	Whole body	Edible portion	Edible portion
	Unit	LOR	Screening criteria						
Weight	g	0.1	-	154	19	15	4.3	12.5	11200
Arsenic	mg/kg	0.05	-	0.06	0.17	<0.05	0.33	<0.05	0.07
Barium	mg/kg	0.1	-	0.2	1.6	<0.1	19.2	0.2	<0.1
Boron	mg/kg	5	-	<5	<5	<5	<5	<5	<5
Chromium	mg/kg	0.05	-	<0.05	0.09	0.6	0.42	<0.05	<0.05
Copper	mg/kg	0.1	20/2*	0.4	0.5	0.4	16.7	0.3	0.3
Molybdenum	mg/kg	0.05	-	<0.05	<0.05	0.07	0.06	<0.05	<0.05
Selenium	mg/kg	0.05	1/2*	0.49	0.2	0.14	0.22	0.12	0.18
Strontium	mg/kg	0.1	-	6.2	41.6	1	78.4	0.5	0.8
Uranium	mg/kg	0.01	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Vanadium	mg/kg	0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Zinc	mg/kg	0.5	40/15*	7.5	34.9	11.5	29.8	7	4.9
Perfluorobutane sulfonic acid (PFBS)	µg/kg	1	-	<1	<1	<1	<1	<1	<1
Perfluoropentane sulfonic acid (PFPeS)	µg/kg	1	-	<1	<1	<1	<1	<1	<1
Perfluorohexane sulfonic acid (PFHxS)	µg/kg	1	-	<1	<1	<1	<1	<1	<1
Perfluoroheptane sulfonic acid (PFHpS)	µg/kg	1	-	<1	<1	<1	<1	<1	<1

rifer alth tion

Sample number				AB8-MA-RB	AB9-AA-WB	AB9-NH-EP	AB9-MS-WB	AB9-TT-EP	AB2-LC-DU
Perfluorooctane sulfonic acid (PFOS) - Linear	µg/kg	1	-	4	<1	<1	<1	<1	<1
Perfluorooctane sulfonic acid (PFOS) - Branched	µg/kg	1	-	2	<1	<1	<1	<1	<1
Perfluorooctane sulfonic acid (PFOS)	µg/kg	1	-	6	<1	<1	<1	<1	<1
Perfluorodecane sulfonic acid (PFDS)	µg/kg	2	-	<2	<2	<2	<2	<2	<2
Perfluorobutanoic acid (PFBA)	µg/kg	5	-	<5	<5	<5	<5	<5	<5
Perfluoropentanoic acid (PFPeA)	µg/kg	2	-	<2	<2	<2	<2	<2	<2
Perfluorohexanoic acid (PFHxA)	µg/kg	1	-	<1	<1	<1	<1	<1	<1
Perfluoroheptanoic acid (PFHpA)	µg/kg	1	-	<1	<1	<1	<1	<1	<1
Perfluorooctanoic acid (PFOA)	µg/kg	1	11.2**	<1	<1	<1	<1	<1	<1
Perfluorononanoic acid (PFNA)	µg/kg	1	-	<1	<1	<1	<1	<1	<1
Perfluorodecanoic acid (PFDA)	µg/kg	1	-	<1	<1	<1	<1	<1	<1
Perfluoroundecanoic acid (PFUnDA)	µg/kg	1	-	<1	<1	<1	<1	<1	<1
Perfluorododecanoic acid (PFDoDA)	µg/kg	2	-	<2	<2	<2	<2	<2	<2
Perfluorotridecanoic acid (PFTrDA)	µg/kg	2	-	<2	<2	<2	<2	<2	<2
Perfluorotetradecanoic acid (PFTeDA)	µg/kg	2	-	<2	<2	<2	<2	<2	<2
Perfluorooctane sulfonamide (FOSA)	µg/kg	5	-	<5	<5	<5	<5	<5	<5
N-Methyl perfluorooctane sulfonamide (MeFOSA)	µg/kg	5	-	<5	<5	<5	<5	<5	<5
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	µg/kg	2	-	<2	<2	<2	<2	<2	<2
N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	µg/kg	2	-	<2	<2	<2	<2	<2	<2
N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	µg/kg	2	-	<2	<2	<2	<2	<2	<2
N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	µg/kg	1	-	<1	<1	<1	<1	<1	<1
N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	µg/kg	1	-	<1	<1	<1	<1	<1	<1
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	µg/kg	2	-	<2	<2	<2	<2	<2	<2



Sample number				AB8-MA-RB	AB9-AA-WB	AB9-NH-EP	AB9-MS-WB	AB9-TT-EP	AB2-LC-DU
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	µg/kg	2	-	<2	<2	<2	<2	<2	<2
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	µg/kg	2	-	<2	<2	<2	<2	<2	<2
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	µg/kg	2	-	<2	<2	<2	<2	<2	<2
Sum of PFAS	µg/kg	1	-	6	<1	<1	<1	<1	<1
Sum of PFHxS and PFOS	µg/kg	1	1.4/4.6/8.2***	6	<1	<1	<1	<1	<1
Lithium	mg/kg	0.2	-		<0.2	<0.2	<0.2	<0.2	-
Thorium	mg/kg	0.01	-		<0.01	<0.01	0.022	<0.01	-
Fluoride	mg/kg	0.2	-						-

Sample number				AB3-CS-DU	AB9-NH- DU	AB1-MA- DU	AB1-MA- TR	AB1-NH-TR
Date sampled				30/01/2023	30/01/2023	30/1/2023	30/1/2023	30/01/2023
Species				Craterocephalus stercusmuscarum	Neosilurus hyrtlii	Macquaria ambigua	Macquaria ambigua	Neosilurus hyrtlii
Common name	Common name			Flyspecked Hardyhead	Hyrtl's Catfish	Yellowbelly	Yellowbelly	Hyrtl's Catfish
Site			AB3	AB9	AB1	AB1	AB1	
System			Lake Callide	Lake Kroombit	Callide Creek U/S	Callide Creek U/S	Callide Creek U/S	
Condition			Test	Reference	Control	Control	Control	
Assessment			Ecological health	Human health	Human health	Human health	Human health	
Tissue analysed				Whole body	Edible portion	Edible portion	Edible portion	Edible portion
	Unit	LOR	Screening criteria					
Weight	g	0.1	-	27	15	1150	-	-
Arsenic	mg/kg	0.05	-	0.24	<0.05	0.05	< 2	< 2
Barium	mg/kg	0.1	-	2.8	0.2	<0.1	< 10	< 10
Boron	mg/kg	5	-	<5	<5	<5	< 10	< 25
Chromium	mg/kg	0.05	-	1.44	0.55	<0.05	< 5	< 5



www.hydrobiology.biz

Sample number				AB3-CS-DU	AB9-NH- DU	AB1-MA- DU	AB1-MA- TR	AB1-NH-TR
Copper	mg/kg	0.1	20/2*	0.6	0.4	0.3	< 5	< 5
Molybdenum	mg/kg	0.05	-	0.2	0.07	<0.05	< 5	< 5
Selenium	mg/kg	0.05	1/2*	0.21	0.13	0.4	< 2	< 2
Strontium	mg/kg	0.1	-	61.3	5.9	0.4	< 10	< 10
Uranium	mg/kg	0.01	-	<0.01	<0.01	<0.01	< 10	< 10
Vanadium	mg/kg	0.5	-	<0.5	<0.5	<0.5	< 10	< 10
Zinc	mg/kg	0.5	40/15*	54.3	15.6	9.3	7.8	10
Perfluorobutane sulfonic acid (PFBS)	µg/kg	1	-	<1	<1	<1	<1	<1
Perfluoropentane sulfonic acid (PFPeS)	µg/kg	1	-	<1	<1	<1	<1	<1
Perfluorohexane sulfonic acid (PFHxS)	µg/kg	1	-	<1	<1	<1	<1	<1
Perfluoroheptane sulfonic acid (PFHpS)	µg/kg	1	-	<1	<1	<1	<1	<1
Perfluorooctane sulfonic acid (PFOS) - Linear	µg/kg	1	-	<1	<1	<1	<1	<1
Perfluorooctane sulfonic acid (PFOS) - Branched	µg/kg	1	-	<1	<1	<1	<1	<1
Perfluorooctane sulfonic acid (PFOS)	µg/kg	1	-	<1	<1	<1	<1	<1
Perfluorodecane sulfonic acid (PFDS)	µg/kg	2	-	<2	<2	<2	<2	<2
Perfluorobutanoic acid (PFBA)	µg/kg	5	-	<5	<5	<5	<5	<5
Perfluoropentanoic acid (PFPeA)	µg/kg	2	-	<2	<2	<2	<2	<2
Perfluorohexanoic acid (PFHxA)	µg/kg	1	-	<1	<1	<1	<1	<1
Perfluoroheptanoic acid (PFHpA)	µg/kg	1	-	<1	<1	<1	<1	<1
Perfluorooctanoic acid (PFOA)	µg/kg	1	11.2**	<1	<1	<1	<1	<1

Sample number				AB3-CS-DU	AB9-NH- DU	AB1-MA- DU	AB1-MA- TR	AB1-NH-TR
Perfluorononanoic acid (PFNA)	µg/kg	1	-	<1	<1	<1	<1	<1
Perfluorodecanoic acid (PFDA)	µg/kg	1	-	<1	<1	<1	<1	<1
Perfluoroundecanoic acid (PFUnDA)	µg/kg	1	-	<1	<1	<1	<1	<1
Perfluorododecanoic acid (PFDoDA)	µg/kg	2	-	<2	<2	<2	<2	<2
Perfluorotridecanoic acid (PFTrDA)	µg/kg	2	-	<2	<2	<2	<2	<2
Perfluorotetradecanoic acid (PFTeDA)	µg/kg	2	-	<2	<2	<2	<2	<2
Perfluorooctane sulfonamide (FOSA)	µg/kg	5	-	<5	<5	<5	<5	<5
N-Methyl perfluorooctane sulfonamide (MeFOSA)	µg/kg	5	-	<5	<5	<5	<5	<5
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	µg/kg	2	-	<2	<2	<2	<2	<2
N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	µg/kg	2	-	<2	<2	<2	<2	<2
N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	µg/kg	2	-	<2	<2	<2	<2	<2
N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	µg/kg	1	-	<1	<1	<1	<1	<1
N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	µg/kg	1	-	<1	<1	<1	<1	<1
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	µg/kg	2	-	<2	<2	<2	<2	<2
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	µg/kg	2	-	<2	<2	<2	<2	<2

Sample number				AB3-CS-DU	AB9-NH- DU	AB1-MA- DU	AB1-MA- TR	AB1-NH-TR
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	µg/kg	2	-	<2	<2	<2	<2	<2
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	µg/kg	2	-	<2	<2	<2	<2	<2
Sum of PFAS	µg/kg	1	-	<1	<1	<1	<1	<1
Sum of PFHxS and PFOS	µg/kg	1	1.4/4.6/8.2***	<1	<1	<1	<1	<1
Lithium	mg/kg	0.2	-	-	-	-	-	-
Thorium	mg/kg	0.01	-	-	-	-	-	-
Fluoride	mg/kg	0.2	-	-	-	-	-	-

* Crustacean GEL/ Fish GEL. Units mg/kgbw/day.

** Human health screening value. Units µg/kgbw/day.

***Human health screening value/Mammalian diet/ Avian diet. Units  $\mu g/kgbw/day.$ 

# APPENDIX F. LABORATORY REPORTS



**Ecological and Contaminants Report** 

www.hydrobiology.biz



עיויי

**ac-MR**A

 $u_{\rm mb}$ 

Hydrobiology QLD Pty Ltd Unit 27/43 Lang Parade Auchenflower QLD 4066

4066

Josh Hatton

Report Project name Project ID Received Date

Attention:

968084-S B22096

Feb 24, 2023

Client Sample ID Sample Matrix			ES2304523-036 Solid B23-
Eurofins Sample No.			Ma0002543
Date Sampled			Feb 04, 2023
Test/Reference	LOR	Unit	
Heavy Metals	-		
Arsenic	2	mg/kg	< 2
Barium	10	mg/kg	< 10
Boron	10	mg/kg	< 10
Chromium	5	mg/kg	< 5
Copper	5	mg/kg	< 5
Lithium	5	mg/kg	< 5
Molybdenum	5	mg/kg	< 5
Selenium	2	mg/kg	< 2
Strontium	10	mg/kg	< 10
Thallium	10	mg/kg	< 10
Uranium	10	mg/kg	< 10
Vanadium	10	mg/kg	< 10
Zinc	5	mg/kg	7.8
Perfluoroalkyl carboxylic acids (PFCAs)	•		
Perfluorobutanoic acid (PFBA) ^{N11}	5	ug/kg	< 5
Perfluoropentanoic acid (PFPeA) ^{N11}	5	ug/kg	< 5
Perfluorohexanoic acid (PFHxA) ^{N11}	5	ug/kg	< 5
Perfluoroheptanoic acid (PFHpA) ^{N11}	5	ug/kg	< 5
Perfluorooctanoic acid (PFOA) ^{N11}	5	ug/kg	< 5
Perfluorononanoic acid (PFNA) ^{N11}	5	ug/kg	< 5
Perfluorodecanoic acid (PFDA) ^{N11}	5	ug/kg	< 5
Perfluoroundecanoic acid (PFUnDA) ^{N11}	5	ug/kg	< 5
Perfluorododecanoic acid (PFDoDA) ^{N11}	5	ug/kg	< 5
Perfluorotridecanoic acid (PFTrDA) ^{N15}	5	ug/kg	< 5
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	5	ug/kg	< 5
13C4-PFBA (surr.)	1	%	74
13C5-PFPeA (surr.)	1	%	131
13C5-PFHxA (surr.)	1	%	87
13C4-PFHpA (surr.)	1	%	75
13C8-PFOA (surr.)	1	%	107
13C5-PFNA (surr.)	1	%	124
13C6-PFDA (surr.)	1	%	136
13C2-PFUnDA (surr.)	1	%	115
13C2-PFDoDA (surr.)	1	%	86
13C2-PFTeDA (surr.)	1	%	76

NATA A Accredi Site Nur

NATA Accredited Accreditation Number 1261 Site Number 20794

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.



Client Sample ID			ES2304523-036
Sample Matrix			Solid
Eurofins Sample No.			B23- Ma0002543
Date Sampled			Feb 04, 2023
Test/Reference	LOR	Unit	
Perfluoroalkyl sulfonamido substances	-		
Perfluorooctane sulfonamide (FOSA) ^{N11}	5	ug/kg	< 5
N-methylperfluoro-1-octane sulfonamide (N- MeFOSA) ^{N11}	5	ug/kg	< 5
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	5	ug/kg	< 5
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol(N- MeFOSE) ^{N11}	5	ug/kg	< 5
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol(N- EtFOSE) ^{N11}	5	ug/kg	< 5
N-ethyl-perfluorooctanesulfonamidoacetic acid (N- EtFOSAA) ^{N11}	10	ug/kg	< 10
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11}	10	ug/kg	< 10
13C8-FOSA (surr.)	1	%	28
D3-N-MeFOSA (surr.)	1	%	INT
D5-N-EtFOSA (surr.)	1	%	INT
D7-N-MeFOSE (surr.)	1	%	INT
D9-N-EtFOSE (surr.)	1	%	INT
D5-N-EtFOSAA (surr.)	1	%	118
D3-N-MeFOSAA (surr.)	1	%	119
Perfluoroalkyl sulfonic acids (PFSAs)			
Perfluorobutanesulfonic acid (PFBS) ^{N11}	5	ug/kg	< 5
Perfluorononanesulfonic acid (PFNS) ^{N15}	5	ug/kg	< 5
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	5	ug/kg	< 5
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	5	ug/kg	< 5
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	5	ug/kg	< 5
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	5	ug/kg	< 5
Perfluorooctanesulfonic acid (PFOS) ^{N11}	5	ug/kg	< 5
Perfluorodecanesulfonic acid (PFDS) ^{N15}	5	ug/kg	< 5
13C3-PFBS (surr.) 18O2-PFHxS (surr.)	1	%	81
	1	%	103
13C8-PFOS (surr.)	1	%	88
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)			
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11} 1H.1H.2H.2H-perfluorooctanesulfonic acid(6:2	5	ug/kg	< 5
FTSA) ^{N11} 1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2	10	ug/kg	< 10
FTSA) ^{N11} 1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2	5	ug/kg	< 5
FTSA) ^{N11}	5	ug/kg	< 5
13C2-4:2 FTSA (surr.)	1	%	143
13C2-6:2 FTSA (surr.)	1	%	115
13C2-8:2 FTSA (surr.)	1	%	78
13C2-10:2 FTSA (surr.)	1	%	191
PFASs Summations			
Sum (PFHxS + PFOS)*	5	ug/kg	< 5
Sum of US EPA PFAS (PFOS + PFOA)*	5	ug/kg	< 5
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	5	ug/kg	< 5
Sum of WA DWER PFAS (n=10)*	10	ug/kg	< 10
Sum of PFASs (n=30)*	50	ug/kg	< 50



#### Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Heavy Metals	Melbourne	Apr 03, 2023	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Per- and Polyfluoroalkyl Substances (PFASs)			
Perfluoroalkyl carboxylic acids (PFCAs)	Brisbane	Mar 01, 2023	28 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
Perfluoroalkyl sulfonamido substances	Brisbane	Mar 01, 2023	28 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
Perfluoroalkyl sulfonic acids (PFSAs)	Brisbane	Mar 01, 2023	28 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)	Brisbane	Mar 01, 2023	28 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			

		Fine	Eurofins Env ABN: 50 005 08		g Australia Pty Ltd														Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environm NZBN: 9429046024954	-
web: w	ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3216 VIC 3216 VIC 3216 NSW 21 Tel: +61 3 8564 5000 NATA# 1261 Site# 1254 NATA# 1261 Site# 25403 NATA#		n  5 2 9900 8	3400	Mitch ACT 2 Tel: +	,2 Dacr ell 2911 61 2 61	13 809	et 1/ M Q 1 Te	urarrie LD 417 el: +61	Illwood 2 7 3902 4	4600	1/2 Fi Mayfi Tel: + NATA	astle ost Driv eld Wes 61 2 49 # 1261 25079 8	t NSW 68 8448	3	Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 45 51 IANZ# 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290			
	ompany Name: Idress:	Hydrobiolog Unit 27/43 L Auchenflow QLD 4066		d			R	rder N eport hone: ax:	#:		96808 0431 6		27						Received: Due: Priority: Contact Name:	Feb 24, 2023 3:47 Mar 3, 2023 5 Day Josh Hatton	PM
	oject Name: oject ID:	B22096															E	urofii	ns Analytical Service	es Manager : Alana	Wadsworth
		S	ample Detail			Arsenic	Barium	Boron	Chromium	Copper	Lithium	Molybdenum	Selenium	Strontium	Thallium	Uranium	Vanadium	Zinc	Per- and Polyfluoroalkyl Substances (PFASs)		
	bane Laborator	y - NATA # 126	1 Site # 2079	94		X	X	Х	X	X	Х	X	X	Х	X	Х	Х	X	x		
Exte No	ernal Laboratory Sample ID	Sample Date	Sampling	Matrix	LAB ID														+		
4	E 2004500	-	Time	Fish	B22 Mc0002542														+		
1	ES2304523- 001	Jan 30, 2023		FISN	B23-Ma0002542	Х	X	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	X	x		
2	ES2304523- 036	Feb 04, 2023		Fish	B23-Ma0002543	х	x	х	x	x	х	x	x	х	x	х	х	x	x		
Test	Counts					2	2	2	2	2	2	2	2	2	2	2	2	2	2		



#### Internal Quality Control Review and Glossary

#### General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

#### Units

enne		
mg/kg: milligrams per kilogram	mg/L: milligrams per litre	<b>μg/L:</b> micrograms per litre
ppm: parts per million	ppb: parts per billion	%: Percentage
org/100 mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100 mL: Most Probable Number of organisms per 100 millilitres
CFU: Colony forming unit		

#### Terms

APHA	American Public Health Association
COC	Chain of Custody
CP	Client Parent - QC was performed on samples pertaining to this report
CRM	Certified Reference Material (ISO17034) - reported as percent recovery.
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
LOR	Limit of Reporting.
LCS	Laboratory Control Sample - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
SRA	Sample Receipt Advice
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
твто	Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.
TCLP	Toxicity Characteristic Leaching Procedure
TEQ	Toxic Equivalency Quotient or Total Equivalence
QSM	US Department of Defense Quality Systems Manual Version 5.4
US EPA	United States Environmental Protection Agency
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

#### **QC** - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

#### **QC Data General Comments**

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.



#### **Quality Control Results**

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank			•			
Heavy Metals						
Arsenic	mg/kg	< 2		2	Pass	
Barium	mg/kg	< 10		10	Pass	
Boron	mg/kg	< 10		10	Pass	
Chromium	mg/kg	< 5		5	Pass	
Copper	mg/kg	< 5		5	Pass	
Lithium	mg/kg	< 5		5	Pass	
Molybdenum	mg/kg	< 5		5	Pass	
Selenium	mg/kg	< 2		2	Pass	
Strontium	mg/kg	< 10		10	Pass	
Thallium	mg/kg	< 10		10	Pass	
Uranium	mg/kg	< 10		10	Pass	
Vanadium	mg/kg	< 10		10	Pass	
Zinc	mg/kg	< 5		5	Pass	
Method Blank						
Perfluoroalkyl carboxylic acids (PFCAs)						
Perfluorobutanoic acid (PFBA)	ug/kg	< 5		5	Pass	
Perfluoropentanoic acid (PFPeA)	ug/kg	< 5		5	Pass	
Perfluorohexanoic acid (PFHxA)	ug/kg	< 5		5	Pass	
Perfluoroheptanoic acid (PFHpA)	ug/kg	< 5		5	Pass	
Perfluorooctanoic acid (PFOA)	ug/kg	< 5		5	Pass	
Perfluorononanoic acid (PFNA)	ug/kg	< 5		5	Pass	
Perfluorodecanoic acid (PFDA)	ug/kg	< 5		5	Pass	
Perfluoroundecanoic acid (PFUnDA)	ug/kg	< 5		5	Pass	
Perfluorododecanoic acid (PFDoDA)	ug/kg	< 5		5	Pass	
Perfluorotridecanoic acid (PFTrDA)	ug/kg	< 5		5	Pass	
Perfluorotetradecanoic acid (PFTeDA)	ug/kg	< 5		5	Pass	
Method Blank	ug/kg				1 835	
Perfluoroalkyl sulfonamido substances						
Perfluorooctane sulfonamide (FOSA)	ug/kg	< 5		5	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	ug/kg	< 5		5	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	ug/kg ug/kg	< 5		5	Pass	
2-(N-methylperfluoro-1-octane sulfonamide)-ethanol(N-	ug/kg	< 0		5	F a 55	
MeFOSE)	ug/kg	< 5		5	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol(N-EtFOSE)	ug/kg	< 5		5	Pass	
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	ug/kg	< 10		10	Pass	
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	ug/kg	< 10		10	Pass	
Method Blank						
Perfluoroalkyl sulfonic acids (PFSAs)						
Perfluorobutanesulfonic acid (PFBS)	ug/kg	< 5		5	Pass	
Perfluorononanesulfonic acid (PFNS)	ug/kg	< 5		5	Pass	
Perfluoropropanesulfonic acid (PFPrS)	ug/kg	< 5		5	Pass	
Perfluoropentanesulfonic acid (PFPeS)	ug/kg	< 5		5	Pass	
Perfluorohexanesulfonic acid (PFHxS)	ug/kg	< 5		5	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	ug/kg	< 5		5	Pass	
Perfluorooctanesulfonic acid (PFOS)	ug/kg	< 5		5	Pass	
Perfluorodecanesulfonic acid (PFDS)	ug/kg	< 5		5	Pass	
Method Blank	8.18	· · · · ·	· · · · ·	· -		
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)						
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA)	ug/kg	< 5		5	Pass	
1H.1H.2H.2H-perfluorooctanesulfonic acid(6:2 FTSA)	ug/kg ug/kg	< 10		10	Pass	



Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA)	ug/kg	< 5		5	Pass	
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA)	ug/kg	< 5		5	Pass	
LCS - % Recovery						
Heavy Metals						
Arsenic	%	102		80-120	Pass	
Barium	%	101		80-120	Pass	
Boron	%	95		80-120	Pass	
Chromium	%	106		80-120	Pass	
Copper	%	102		80-120	Pass	
Lithium	%	102		80-120	Pass	
Molybdenum	%	109		80-120	Pass	
Selenium	%	103		80-120	Pass	
Strontium	%	96		80-120	Pass	
Thallium	%	120		80-120	Pass	
Uranium	%	114		80-120	Pass	
Vanadium	%	106		80-120	Pass	
Zinc	%	97		80-120	Pass	
LCS - % Recovery			· · · ·			
Perfluoroalkyl carboxylic acids (PFCAs)						
Perfluorobutanoic acid (PFBA)	%	99		50-150	Pass	
Perfluoropentanoic acid (PFPeA)	%	94		50-150	Pass	
Perfluorohexanoic acid (PFHxA)	%	93		50-150	Pass	
Perfluoroheptanoic acid (PFHpA)	%	82		50-150	Pass	
Perfluorooctanoic acid (PFOA)	%	85		50-150	Pass	
Perfluorononanoic acid (PFNA)	%	94		50-150	Pass	
Perfluorodecanoic acid (PFDA)	%	86		50-150	Pass	
Perfluoroundecanoic acid (PFUnDA)	%	92		50-150	Pass	
Perfluorododecanoic acid (PFDoDA)	%	101		50-150	Pass	
Perfluorotridecanoic acid (PFTrDA)	%	144		50-150	Pass	
Perfluorotetradecanoic acid (PFTeDA)	%	74		50-150	Pass	
LCS - % Recovery	70				1 400	
Perfluoroalkyl sulfonamido substances						
Perfluorooctane sulfonamide (FOSA)	%	78		50-150	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	%	104		50-150	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	%	72		50-150	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol(N-	70	12		00 100	1 400	
MeFOSE)	%	100		50-150	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol(N-EtFOSE)	%	102		50-150	Pass	
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	%	101		50-150	Pass	
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	%	101		50-150	Pass	
LCS - % Recovery						
Perfluoroalkyl sulfonic acids (PFSAs)						
Perfluorobutanesulfonic acid (PFBS)	%	85		50-150	Pass	
Perfluorononanesulfonic acid (PFNS)	%	87		50-150	Pass	
Perfluoropropanesulfonic acid (PFPrS)	%	106		50-150	Pass	
Perfluoropentanesulfonic acid (PFPeS)	%	52		50-150	Pass	
Perfluorohexanesulfonic acid (PFHxS)	%	100		50-150	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	%	97		50-150	Pass	
Perfluorooctanesulfonic acid (PFOS)	%	92		50-150	Pass	
Perfluorodecanesulfonic acid (PFDS)	%	74		50-150	Pass	
LCS - % Recovery			· · · ·	-		
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)						
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA)	%	125		50-150	Pass	
1H.1H.2H.2H-perfluorooctanesulfonic acid(6:2 FTSA)	%	111		50-150	Pass	
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA)	%	96		50-150	Pass	
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA)	%	126		50-150	Pass	



Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				1				
Heavy Metals				Result 1				
Arsenic	M23-Ma0039803	NCP	%	99		75-125	Pass	
Barium	M23-Ma0039803	NCP	%	106		75-125	Pass	
Boron	M23-Ma0041836	NCP	%	80		75-125	Pass	
Chromium	M23-Ma0041836	NCP	%	80		75-125	Pass	
Copper	M23-Ma0041836	NCP	%	81		75-125	Pass	
Lithium	M23-Ma0041836	NCP	%	78		75-125	Pass	
Molybdenum	M23-Ma0041836	NCP	%	82		75-125	Pass	
Selenium	M23-Ma0039803	NCP	%	96		75-125	Pass	
Strontium	M23-Ma0036586	NCP	%	97		75-125	Pass	
Thallium	M23-Ma0041836	NCP	%	80		75-125	Pass	
Uranium	M23-Ma0041836	NCP	%	89		75-125	Pass	
Vanadium	M23-Ma0041836	NCP	%	102		75-125	Pass	
Zinc	M23-Ma0041836	NCP	%	78		75-125	Pass	
Spike - % Recovery				1	I I	T	1	
Perfluoroalkyl carboxylic acids (Pl	-CAs)			Result 1				
Perfluorobutanoic acid (PFBA)	B23-Ma0002543	CP	%	101		50-150	Pass	
Perfluoropentanoic acid (PFPeA)	B23-Ma0002543	CP	%	97		50-150	Pass	
Perfluorohexanoic acid (PFHxA)	B23-Ma0002543	CP	%	92		50-150	Pass	
Perfluoroheptanoic acid (PFHpA)	B23-Ma0002543	CP	%	87		50-150	Pass	
Perfluorooctanoic acid (PFOA)	B23-Ma0002543	CP	%	78		50-150	Pass	
Perfluorononanoic acid (PFNA)	B23-Ma0002543	CP	%	84		50-150	Pass	
Perfluorodecanoic acid (PFDA)	B23-Ma0002543	CP	%	81		50-150	Pass	
Perfluoroundecanoic acid (PFUnDA)	B23-Ma0002543	СР	%	101		50-150	Pass	
Perfluorododecanoic acid (PFDoDA)	B23-Ma0002543	СР	%	106		50-150	Pass	
Perfluorotridecanoic acid (PFTrDA)	B23-Ma0002543	CP	%	60		50-150	Pass	]
Perfluorotetradecanoic acid (PFTeDA)	B23-Ma0002543	СР	%	113		50-150	Pass	
Spike - % Recovery				1				
Perfluoroalkyl sulfonamido substa	nces			Result 1				
Perfluorooctane sulfonamide (FOSA)	B23-Ma0002543	СР	%	70		50-150	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	B23-Ma0002543	СР	%	83		50-150	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	B23-Ma0002543	СР	%	70		50-150	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol(N-MeFOSE)	B23-Ma0002543	СР	%	147		50-150	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol(N-EtFOSE)	B23-Ma0002543	СР	%	94		50-150	Pass	
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	B23-Ma0002543	СР	%	85		50-150	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	B23-Ma0002543	СР	%	109		50-150	Pass	
Spike - % Recovery								
Perfluoroalkyl sulfonic acids (PFS	As)			Result 1				
Perfluorobutanesulfonic acid (PFBS)	B23-Ma0002543	СР	%	80		50-150	Pass	
Perfluorononanesulfonic acid (PFNS)	B23-Ma0002543	СР	%	89		50-150	Pass	
Perfluoropropanesulfonic acid (PFPrS)	B23-Ma0002543	СР	%	118		50-150	Pass	
Perfluoropentanesulfonic acid (PFPeS)	B23-Ma0002543	СР	%	54		50-150	Pass	



Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Perfluorohexanesulfonic acid (PFHxS)	B23-Ma0002543	СР	%	102			50-150	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	B23-Ma0002543	СР	%	100			50-150	Pass	
Perfluorooctanesulfonic acid (PFOS)	B23-Ma0002543	СР	%	94			50-150	Pass	
Perfluorodecanesulfonic acid (PFDS)	B23-Ma0002543	СР	%	62			50-150	Pass	
Spike - % Recovery									
n:2 Fluorotelomer sulfonic acids (	n:2 FTSAs)			Result 1					
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	B23-Ma0002543	СР	%	113			50-150	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid(6:2 FTSA)	B23-Ma0002543	СР	%	112			50-150	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2 FTSA)	B23-Ma0002543	СР	%	94			50-150	Pass	
1H.1H.2H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	B23-Ma0002543	СР	%	108			50-150	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	B23-Ma0002543	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Barium	B23-Ma0002543	CP	mg/kg	< 10	< 10	<1	30%	Pass	
Boron	B23-Ma0002543	СР	mg/kg	< 10	< 10	<1	30%	Pass	
Chromium	B23-Ma0002543	СР	mg/kg	< 5	< 5	<1	30%	Pass	
Copper	B23-Ma0002543	СР	mg/kg	< 5	< 5	<1	30%	Pass	
Lithium	B23-Ma0002543	СР	mg/kg	< 5	< 5	<1	30%	Pass	
Molybdenum	B23-Ma0002543	СР	mg/kg	< 5	< 5	<1	30%	Pass	
Selenium	B23-Ma0002543	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Strontium	B23-Ma0002543	CP	mg/kg	< 10	< 10	<1	30%	Pass	
Thallium	B23-Ma0002543	СР	mg/kg	< 10	< 10	<1	30%	Pass	
Uranium	B23-Ma0002543	СР	mg/kg	< 10	< 10	<1	30%	Pass	
Vanadium	B23-Ma0002543	СР	mg/kg	< 10	< 10	<1	30%	Pass	
Zinc	B23-Ma0002543	СР	mg/kg	7.8	7.8	<1	30%	Pass	
Duplicate									
Perfluoroalkyl carboxylic acids (Pf	-CAs)			Result 1	Result 2	RPD			
Perfluorobutanoic acid (PFBA)	B23-Ma0002543	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoropentanoic acid (PFPeA)	B23-Ma0002543	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorohexanoic acid (PFHxA)	B23-Ma0002543	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoroheptanoic acid (PFHpA)	B23-Ma0002543	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorooctanoic acid (PFOA)	B23-Ma0002543	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorononanoic acid (PFNA)	B23-Ma0002543	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorodecanoic acid (PFDA)	B23-Ma0002543	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoroundecanoic acid (PFUnDA)	B23-Ma0002543	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorododecanoic acid (PFDoDA)	B23-Ma0002543	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorotridecanoic acid (PFTrDA)	B23-Ma0002543	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorotetradecanoic acid (PFTeDA)	B23-Ma0002543	СР	ug/kg	< 5	< 5	<1	30%	Pass	



Duplicate									
Perfluoroalkyl sulfonamido substa	ances			Result 1	Result 2	RPD			
Perfluorooctane sulfonamide (FOSA)	B23-Ma0002543	CP	ug/kg	< 5	< 5	<1	30%	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	B23-Ma0002543	B23-Ma0002543 CP ug/k		< 5	< 5	<1	30%	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	B23-Ma0002543	СР	ug/kg	< 5	< 5	<1	30%	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol(N-MeFOSE)	B23-Ma0002543	СР	ug/kg	< 5	< 5	<1	30%	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol(N-EtFOSE)	B23-Ma0002543	СР	ug/kg	< 5	< 5	<1	30%	Pass	
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	B23-Ma0002543	СР	ug/kg	< 10	< 10	<1	30%	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	B23-Ma0002543	СР	ug/kg	< 10	< 10	<1	30%	Pass	
Duplicate									
Perfluoroalkyl sulfonic acids (PFS	As)		-	Result 1	Result 2	RPD			
Perfluorobutanesulfonic acid (PFBS)	B23-Ma0002543	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorononanesulfonic acid (PFNS)	B23-Ma0002543	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoropropanesulfonic acid (PFPrS)	B23-Ma0002543	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoropentanesulfonic acid (PFPeS)	B23-Ma0002543	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorohexanesulfonic acid (PFHxS)	B23-Ma0002543	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	B23-Ma0002543	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorooctanesulfonic acid (PFOS)	B23-Ma0002543	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorodecanesulfonic acid (PFDS)	B23-Ma0002543	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Duplicate									
n:2 Fluorotelomer sulfonic acids (	n:2 FTSAs)		1	Result 1	Result 2	RPD			
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	B23-Ma0002543	СР	ug/kg	< 5	< 5	<1	30%	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid(6:2 FTSA)	B23-Ma0002543	СР	ug/kg	< 10	< 10	<1	30%	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2 FTSA)	B23-Ma0002543	СР	ug/kg	< 5	< 5	<1	30%	Pass	
1H.1H.2H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	B23-Ma0002543	СР	ug/kg	< 5	< 5	<1	30%	Pass	



#### Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	N/A
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

#### **Qualifier Codes/Comments**

Code Description

N11 Isotope dilution is used for calibration of each native compound for which an exact labelled analogue is available (Isotope Dilution Quantitation). The isotopically labelled nalogues allow identification and recovery correction of the concentration of the associated native PFAS compounds.

Where the native PFAS compound does not have labelled analogue then the quantification is made using the Extracted Internal Standard Analyte with the closest retention time N15 to the analyte and no recovery correction has been made (Internal Standard Quantitation).

#### Authorised by:

Alana Wadsworth Emily Rosenberg Jonathon Angell Analytical Services Manager Senior Analyst-Metal Senior Analyst-PFAS

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

^{*} Indicates NATA accreditation does not cover the performance of this service



Hydrobiology QLD Pty Ltd Unit 27/43 Lang Parade Auchenflower QLD 4066





NATA Accredited Accreditation Number 1261 Site Number 20794

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention:	
Report	
Project name	

**Received Date** 

**975237-S** ES2304523 Mar 21, 2023

Josh Hatton

Client Sample ID			NM1
Sample Matrix			Fish
			B23-
Eurofins Sample No.			Ma0059448
Date Sampled		-	Not Provided ¹¹²
Test/Reference	LOR	Unit	
Heavy Metals		-	
Arsenic	2	mg/kg	< 2
Barium	10	mg/kg	< 10
Boron	10	mg/kg	< 25
Chromium	5	mg/kg	< 5
Copper	5	mg/kg	< 5
Lithium	5	mg/kg	< 5
Molybdenum	5	mg/kg	< 5
Selenium	2	mg/kg	< 2
Strontium	10	mg/kg	< 10
Thallium	10	mg/kg	< 10
Uranium	10	mg/kg	< 10
Vanadium	10	mg/kg	< 10
Zinc	5	mg/kg	10.0
Perfluoroalkyl carboxylic acids (PFCAs)		-	
Perfluorobutanoic acid (PFBA) ^{N11}	5	ug/kg	< 5
Perfluoropentanoic acid (PFPeA) ^{N11}	5	ug/kg	< 5
Perfluorohexanoic acid (PFHxA) ^{N11}	5	ug/kg	< 5
Perfluoroheptanoic acid (PFHpA) ^{N11}	5	ug/kg	< 5
Perfluorooctanoic acid (PFOA) ^{N11}	5	ug/kg	< 5
Perfluorononanoic acid (PFNA) ^{N11}	5	ug/kg	< 5
Perfluorodecanoic acid (PFDA) ^{N11}	5	ug/kg	< 5
Perfluoroundecanoic acid (PFUnDA) ^{N11}	5	ug/kg	< 5
Perfluorododecanoic acid (PFDoDA) ^{N11}	5	ug/kg	< 5
Perfluorotridecanoic acid (PFTrDA) ^{N15}	5	ug/kg	< 5
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	5	ug/kg	< 5
13C4-PFBA (surr.)	1	%	INT
13C5-PFPeA (surr.)	1	%	51
13C5-PFHxA (surr.)	1	%	65
13C4-PFHpA (surr.)	1	%	88
13C8-PFOA (surr.)	1	%	75
13C5-PFNA (surr.)	1	%	89
13C6-PFDA (surr.)	1	%	57
13C2-PFUnDA (surr.)	1	%	85
13C2-PFDoDA (surr.)	1	%	83
13C2-PFTeDA (surr.)	1	%	57



Client Sample ID			NM1
Sample Matrix			Fish
			B23-
Eurofins Sample No.			Ma0059448
Date Sampled			Not Provided ¹¹²
Test/Reference	LOR	Unit	
Perfluoroalkyl sulfonamido substances			
Perfluorooctane sulfonamide (FOSA) ^{N11}	5	ug/kg	< 5
N-methylperfluoro-1-octane sulfonamide (N- MeFOSA) ^{N11}	5	ug/kg	< 5
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	5	ug/kg	< 5
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol(N- MeFOSE) ^{K11}	5	ug/kg	< 5
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol(N- EtFOSE) ^{N11}	5	ug/kg	< 5
N-ethyl-perfluorooctanesulfonamidoacetic acid (N- EtFOSAA) ^{N11}	10	ug/kg	< 10
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11}	10	ug/kg	< 10
13C8-FOSA (surr.)	1	%	34
D3-N-MeFOSA (surr.)	1	%	20
D5-N-EtFOSA (surr.)	1	%	21
D7-N-MeFOSE (surr.)	1	%	INT
D9-N-EtFOSE (surr.)	1	%	INT
D5-N-EtFOSAA (surr.)	1	%	46
D3-N-MeFOSAA (surr.)	1	%	30
Perfluoroalkyl sulfonic acids (PFSAs)		1	
Perfluorobutanesulfonic acid (PFBS) ^{N11}	5	ug/kg	< 5
Perfluorononanesulfonic acid (PFNS) ^{N15}	5	ug/kg	< 5
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	5	ug/kg	< 5
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	5	ug/kg	< 5
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	5	ug/kg	< 5
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	5	ug/kg	< 5
Perfluorooctanesulfonic acid (PFOS) ^{N11}	5	ug/kg	^{N09} < 5
Perfluorodecanesulfonic acid (PFDS) ^{N15}	5	ug/kg	< 5
13C3-PFBS (surr.)	1	%	62
18O2-PFHxS (surr.)	1	%	75
13C8-PFOS (surr.)	1	%	82
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)		1	
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11}	5	ug/kg	< 5
1H.1H.2H.2H-perfluorooctanesulfonic acid(6:2 FTSA) ^{N11}	10	ug/kg	< 10
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11}	5	ug/kg	< 5
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N11}	5	ug/kg	< 5
13C2-4:2 FTSA (surr.)	1	%	96
13C2-6:2 FTSA (surr.)	1	%	INT
13C2-8:2 FTSA (surr.)	1	%	191
13C2-10:2 FTSA (surr.)	1	%	14
PFASs Summations			-
Sum (PFHxS + PFOS)*	5	ug/kg	< 5
Sum of US EPA PFAS (PFOS + PFOA)*	5	ug/kg	< 5
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	5	ug/kg	< 5
Sum of WA DWER PFAS (n=10)*	10	ug/kg	< 10
Sum of PFASs (n=30)*	50	ug/kg	< 50



#### Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Heavy Metals	Melbourne	Mar 30, 2023	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Per- and Polyfluoroalkyl Substances (PFASs)			
Perfluoroalkyl carboxylic acids (PFCAs)	Brisbane	Mar 24, 2023	28 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
Perfluoroalkyl sulfonamido substances	Brisbane	Mar 24, 2023	28 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
Perfluoroalkyl sulfonic acids (PFSAs)	Brisbane	Mar 24, 2023	28 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)	Brisbane	Mar 24, 2023	28 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			

•	ouro	Fine	Eurofins Envi ABN: 50 005 085	-	g Australia Pty Ltd														Eurofins ARL Pty Lte ABN: 91 05 0159 898	Eurofins Environm NZBN: 9429046024954	-
web: ww	w.eurofins.com.au		Melbourne 6 Monterey Road Dandenong Sout VIC 3175 Tel: +61 3 8564 NATA# 1261 Site	th Grovedale VIC 3216 5000 Tel: +61 3	Girrawee NSW 214	n  5 2 9900 8	3400	Mitch ACT 2 Tel: +	,2 Dacr ell 2911 61 2 61	13 809 [,]	t 1/ M Q 1 Te	urarrie LD 417 el: +61 7	Illwood I '2 7 3902 4	4600	Mayfi Tel: + NATA	ost Drive eld West 61 2 496 # 1261	t NSW 2 58 8448	3	Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 45 51 IANZ# 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290
Ado	npany Name: Iress: ject Name:	Hydrobiolog Unit 27/43 L Auchenflow QLD 4066 ES2304523	0	d			Re Pl	rder N eport none: ax:	#:		97523 )431 6		27				E		Received: Due: Priority: Contact Name:	Mar 21, 2023 11:49 Mar 28, 2023 5 Day ALL INVOICES	
																		urofir	ns Analytical Servic	es Manager : Alana	wadsworth
		Sa	ample Detail			Arsenic	Barium	Boron	Chromium	Copper	Lithium	Molybdenum	Selenium	Strontium	Thallium	Uranium	Vanadium	Zinc	Per- and Polyfluoroalkyl Substances (PFASs)		
Melb	ourne Laborato	ory - NATA # 12	261 Site # 12	54		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х			
Brisb	ane Laboratory	/ - NATA # 126	1 Site # 2079	94															х		
Exter	nal Laboratory																				
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																
1	NM1	Not Provided		Fish	B23-Ma0059448	х	х	х	х	х	х	х	х	х	х	х	х	х	x		
Test	Counts					1	1	1	1	1	1	1	1	1	1	1	1	1	1		



#### Internal Quality Control Review and Glossary

#### General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

#### Units

Cinto		
mg/kg: milligrams per kilogram	mg/L: milligrams per litre	μg/L: micrograms per litre
<b>ppm:</b> parts per million	ppb: parts per billion	%: Percentage
org/100 mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100 mL: Most Probable Number of organisms per 100 millilitres
CFU: Colony forming unit		

#### Terms

APHA	American Public Health Association
COC	Chain of Custody
CP	Client Parent - QC was performed on samples pertaining to this report
CRM	Certified Reference Material (ISO17034) - reported as percent recovery.
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
LOR	Limit of Reporting.
LCS	Laboratory Control Sample - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
SRA	Sample Receipt Advice
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
твто	Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.
TCLP	Toxicity Characteristic Leaching Procedure
TEQ	Toxic Equivalency Quotient or Total Equivalence
QSM	US Department of Defense Quality Systems Manual Version 5.4
US EPA	United States Environmental Protection Agency
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

#### **QC** - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

#### **QC Data General Comments**

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.



#### **Quality Control Results**

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank			·			
Heavy Metals						
Arsenic	mg/kg	< 2		2	Pass	
Barium	mg/kg	< 10		10	Pass	
Boron	mg/kg	< 10		10	Pass	
Chromium	mg/kg	< 5		5	Pass	
Copper	mg/kg	< 5		5	Pass	
Lithium	mg/kg	< 5		5	Pass	
Molybdenum	mg/kg	< 5		5	Pass	
Selenium	mg/kg	< 2		2	Pass	
Strontium	mg/kg	< 10		10	Pass	
Thallium	mg/kg	< 10		10	Pass	
Uranium	mg/kg	< 10		10	Pass	
Vanadium	mg/kg	< 10		10	Pass	
Zinc	mg/kg	< 5		5	Pass	
Method Blank						
Perfluoroalkyl carboxylic acids (PFCAs)						
Perfluorobutanoic acid (PFBA)	ug/kg	< 5		5	Pass	
Perfluoropentanoic acid (PFPeA)	ug/kg	< 5		5	Pass	
Perfluorohexanoic acid (PFHxA)	ug/kg	< 5		5	Pass	
Perfluoroheptanoic acid (PFHpA)	ug/kg	< 5		5	Pass	
Perfluorooctanoic acid (PFOA)	ug/kg	< 5		5	Pass	
Perfluorononanoic acid (PFNA)	ug/kg	< 5		5	Pass	
Perfluorodecanoic acid (PFDA)	ug/kg	< 5		5	Pass	
Perfluoroundecanoic acid (PFUnDA)	ug/kg	< 5		5	Pass	
Perfluorododecanoic acid (PFDoDA)	ug/kg	< 5		5	Pass	
Perfluorotridecanoic acid (PFTrDA)	ug/kg	< 5		5	Pass	
Perfluorotetradecanoic acid (PFTeDA)	ug/kg	< 5		5	Pass	
Method Blank	ug/kg				1 433	
Perfluoroalkyl sulfonamido substances						
Perfluorooctane sulfonamide (FOSA)	ug/kg	< 5		5	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	ug/kg ug/kg	< 5		5	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	ug/kg ug/kg	< 5		5	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol(N-	uy/ky	< 5		5	газэ	
MeFOSE)	ug/kg	< 5		5	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol(N-EtFOSE)	ug/kg	< 5		5	Pass	
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	ug/kg	< 10		10	Pass	
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	ug/kg	< 10		10	Pass	
Method Blank			•			
Perfluoroalkyl sulfonic acids (PFSAs)						
Perfluorobutanesulfonic acid (PFBS)	ug/kg	< 5		5	Pass	
Perfluorononanesulfonic acid (PFNS)	ug/kg	< 5		5	Pass	
Perfluoropropanesulfonic acid (PFPrS)	ug/kg	< 5		5	Pass	
Perfluoropentanesulfonic acid (PFPeS)	ug/kg	< 5		5	Pass	
Perfluorohexanesulfonic acid (PFHxS)	ug/kg	< 5		5	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	ug/kg	< 5		5	Pass	
Perfluorooctanesulfonic acid (PFOS)	ug/kg	< 5		5	Pass	
Perfluorodecanesulfonic acid (PFDS)	ug/kg	< 5		5	Pass	
Method Blank			· · · · ·			
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)						
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA)	ug/kg	< 5		5	Pass	
1H.1H.2H.2H-perfluorooctanesulfonic acid(6:2 FTSA)	ug/kg	< 10		10	Pass	



Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA)	ug/kg	< 5	5	Pass	
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA)	ug/kg	< 5	5	Pass	
LCS - % Recovery					
Heavy Metals					
Arsenic	%	101	80-120	Pass	
Barium	%	105	80-120	Pass	
Boron	%	85	80-120	Pass	
Chromium	%	115	80-120	Pass	
Copper	%	114	80-120	Pass	
Lithium	%	110	80-120	Pass	
Molybdenum	%	103	80-120	Pass	
Selenium	%	108	80-120	Pass	
Strontium	%	109	80-120	Pass	
Thallium	%	114	80-120	Pass	
Uranium	%	114	80-120	Pass	
Vanadium	%	111	80-120	Pass	
Zinc	%	102	80-120	Pass	
LCS - % Recovery					
Perfluoroalkyl carboxylic acids (PFCAs)					
Perfluorobutanoic acid (PFBA)	%	90	50-150	Pass	
Perfluoropentanoic acid (PFPeA)	%	86	50-150	Pass	
Perfluorohexanoic acid (PFHxA)	%	92	50-150	Pass	
Perfluoroheptanoic acid (PFHpA)	%	56	50-150	Pass	
Perfluorooctanoic acid (PFOA)	%	88	50-150	Pass	
Perfluorononanoic acid (PFNA)	%	89	50-150	Pass	
Perfluorodecanoic acid (PFDA)	%	99	50-150	Pass	
Perfluoroundecanoic acid (PFUnDA)	%	91	50-150	Pass	
Perfluorododecanoic acid (PFDoDA)	%	99	50-150	Pass	
Perfluorotridecanoic acid (PFTrDA)	%	103	50-150	Pass	
Perfluorotetradecanoic acid (PFTeDA)	%	98	50-150	Pass	
LCS - % Recovery	70			1 400	
Perfluoroalkyl sulfonamido substances					
Perfluorooctane sulfonamide (FOSA)	%	96	50-150	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	%	95	50-150	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	%	102	50-150	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol(N-	70	102	00 100	1 400	
MeFOSE)	%	107	50-150	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol(N-EtFOSE)	%	105	50-150	Pass	
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	%	93	50-150	Pass	
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	%	97	50-150	Pass	
LCS - % Recovery					
Perfluoroalkyl sulfonic acids (PFSAs)					
Perfluorobutanesulfonic acid (PFBS)	%	95	50-150	Pass	
Perfluorononanesulfonic acid (PFNS)	%	101	50-150	Pass	
Perfluoropropanesulfonic acid (PFPrS)	%	94	50-150	Pass	
Perfluoropentanesulfonic acid (PFPeS)	%	106	50-150	Pass	
Perfluorohexanesulfonic acid (PFHxS)	%	99	50-150	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	%	91	50-150	Pass	
Perfluorooctanesulfonic acid (PFOS)	%	87	50-150	Pass	
Perfluorodecanesulfonic acid (PFDS)	%	95	50-150	Pass	
LCS - % Recovery					
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)					
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA)	%	97	50-150	Pass	
1H.1H.2H.2H-perfluorooctanesulfonic acid(6:2 FTSA)	%	96	50-150	Pass	
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA)	%	91	50-150	Pass	
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA)	%	94	50-150	Pass	



Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				-				
Heavy Metals				Result 1				
Arsenic	M23-Ma0072995	NCP	%	89		75-125	Pass	
Barium	M23-Ma0066623	NCP	%	94		75-125	Pass	
Boron	M23-Ma0072995	NCP	%	103		75-125	Pass	
Chromium	M23-Ma0066623	NCP	%	100		75-125	Pass	
Copper	M23-Ma0072995	NCP	%	93		75-125	Pass	
Lithium	M23-Ma0072995	NCP	%	99		75-125	Pass	
Molybdenum	M23-Ma0072995	NCP	%	105		75-125	Pass	
Selenium	M23-Ma0072995	NCP	%	94		75-125	Pass	
Strontium	M23-Ma0066623	NCP	%	105		75-125	Pass	
Thallium	M23-Ma0072995	NCP	%	106		75-125	Pass	
Uranium	M23-Ma0072995	NCP	%	114		75-125	Pass	
Vanadium	M23-Ma0066623	NCP	%	89		75-125	Pass	
Zinc	M23-Ma0066623	NCP	%	84		75-125	Pass	
Spike - % Recovery				1	Г – Г	T	1	
Perfluoroalkyl carboxylic acids (P	FCAs)			Result 1				
Perfluorobutanoic acid (PFBA)	B23-Ma0069480	NCP	%	89		50-150	Pass	
Perfluoropentanoic acid (PFPeA)	B23-Ma0069480	NCP	%	86		50-150	Pass	
Perfluorohexanoic acid (PFHxA)	B23-Ma0069480	NCP	%	89		50-150	Pass	
Perfluoroheptanoic acid (PFHpA)	B23-Ma0069480	NCP	%	56		50-150	Pass	
Perfluorooctanoic acid (PFOA)	B23-Ma0069480	NCP	%	91		50-150	Pass	
Perfluorononanoic acid (PFNA)	B23-Ma0069480	NCP	%	83		50-150	Pass	
Perfluorodecanoic acid (PFDA)	B23-Ma0069480	NCP	%	104		50-150	Pass	
Perfluoroundecanoic acid (PFUnDA)	B23-Ma0069480	NCP	%	87		50-150	Pass	
Perfluorododecanoic acid (PFDoDA)	B23-Ma0069480	NCP	%	94		50-150	Pass	
Perfluorotridecanoic acid (PFTrDA)	B23-Ma0069480	NCP	%	100		50-150	Pass	
Perfluorotetradecanoic acid (PFTeDA)	B23-Ma0069480	NCP	%	98		50-150	Pass	
Spike - % Recovery				1				
Perfluoroalkyl sulfonamido substa	inces			Result 1				
Perfluorooctane sulfonamide (FOSA)	B23-Ma0069480	NCP	%	90		50-150	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	B23-Ma0069480	NCP	%	94		50-150	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	B23-Ma0069480	NCP	%	101		50-150	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol(N-MeFOSE)	B23-Ma0069480	NCP	%	118		50-150	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol(N-EtFOSE)	B23-Ma0069480	NCP	%	99		50-150	Pass	
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	B23-Ma0069480	NCP	%	93		50-150	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	B23-Ma0069480	NCP	%	100		50-150	Pass	
Spike - % Recovery								
Perfluoroalkyl sulfonic acids (PFS	As)			Result 1				
Perfluorobutanesulfonic acid (PFBS)	B23-Ma0069480	NCP	%	85		50-150	Pass	
Perfluorononanesulfonic acid (PFNS)	B23-Ma0069480	NCP	%	108		50-150	Pass	
Perfluoropropanesulfonic acid (PFPrS)	B23-Ma0069480	NCP	%	81		50-150	Pass	
Perfluoropentanesulfonic acid (PFPeS)	B23-Ma0069480	NCP	%	88		50-150	Pass	



Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Perfluorohexanesulfonic acid (PFHxS)	B23-Ma0069480	NCP	%	86			50-150	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	B23-Ma0069480	NCP	%	79			50-150	Pass	
Perfluorooctanesulfonic acid (PFOS)	B23-Ma0069480	NCP	%	101			50-150	Pass	
Perfluorodecanesulfonic acid (PFDS)	B23-Ma0069480	NCP	%	112			50-150	Pass	
Spike - % Recovery							-		
n:2 Fluorotelomer sulfonic acids (	n:2 FTSAs)			Result 1					
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	B23-Ma0069480	NCP	%	98			50-150	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid(6:2 FTSA)	B23-Ma0069480	NCP	%	94			50-150	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2 FTSA)	B23-Ma0069480	NCP	%	92			50-150	Pass	
1H.1H.2H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	B23-Ma0069480	NCP	%	93			50-150	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	M23-Ma0067240	NCP	mg/kg	2.5	2.4	2.0	30%	Pass	
Barium	M23-Ma0067240	NCP	mg/kg	200	200	<1	30%	Pass	
Boron	M23-Ma0067240	NCP	mg/kg	< 25	< 25	<1	30%	Pass	
Chromium	M23-Ma0067240	NCP	mg/kg	43	43	<1	30%	Pass	
Copper	M23-Ma0067240	NCP	mg/kg	120	120	<1	30%	Pass	
Lithium	M23-Ma0067240	NCP	mg/kg	13	13	<1	30%	Pass	
Molybdenum	M23-Ma0067240	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Selenium	M23-Ma0067240	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Strontium	M23-Ma0067240	NCP	mg/kg	120	120	1.4	30%	Pass	
Thallium	M23-Ma0067240	NCP	mg/kg	< 10	< 10	<1	30%	Pass	
Uranium	M23-Ma0067240	NCP	mg/kg	< 10	< 10	<1	30%	Pass	
Vanadium	M23-Ma0067240	NCP	mg/kg	140	140	<1	30%	Pass	
Zinc	M23-Ma0067240	NCP	mg/kg	310	310	<1	30%	Pass	
Duplicate								•	
Perfluoroalkyl carboxylic acids (Pl	FCAs)			Result 1	Result 2	RPD			
Perfluorobutanoic acid (PFBA)	B23-Ma0069479	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoropentanoic acid (PFPeA)	B23-Ma0069479	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorohexanoic acid (PFHxA)	B23-Ma0069479	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoroheptanoic acid (PFHpA)	B23-Ma0069479	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorooctanoic acid (PFOA)	B23-Ma0069479	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorononanoic acid (PFNA)	B23-Ma0069479	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorodecanoic acid (PFDA)	B23-Ma0069479	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoroundecanoic acid (PFUnDA)	B23-Ma0069479	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorododecanoic acid (PFDoDA)	B23-Ma0069479	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorotridecanoic acid (PFTrDA)	B23-Ma0069479	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorotetradecanoic acid (PFTeDA)	B23-Ma0069479	NCP	ug/kg	< 5	< 5	<1	30%	Pass	



### **Environment Testing**

Duplicate									
Perfluoroalkyl sulfonamido substa	ances			Result 1	Result 2	RPD			
Perfluorooctane sulfonamide (FOSA)	B23-Ma0069479	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	B23-Ma0069479	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	B23-Ma0069479	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol(N-MeFOSE)	B23-Ma0069479	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol(N-EtFOSE)	B23-Ma0069479	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	B23-Ma0069479	NCP	ug/kg	< 10	< 10	<1	30%	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	B23-Ma0069479	NCP	ug/kg	< 10	< 10	<1	30%	Pass	
Duplicate									
Perfluoroalkyl sulfonic acids (PFS	As)			Result 1	Result 2	RPD			
Perfluorobutanesulfonic acid (PFBS)	B23-Ma0069479	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorononanesulfonic acid (PFNS)	B23-Ma0069479	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoropropanesulfonic acid (PFPrS)	B23-Ma0069479	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoropentanesulfonic acid (PFPeS)	B23-Ma0069479	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorohexanesulfonic acid (PFHxS)	B23-Ma0069479	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	B23-Ma0069479	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorooctanesulfonic acid (PFOS)	B23-Ma0069479	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorodecanesulfonic acid (PFDS)	B23-Ma0069479	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Duplicate									
n:2 Fluorotelomer sulfonic acids (	n:2 FTSAs)			Result 1	Result 2	RPD			
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	B23-Ma0069479	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid(6:2 FTSA)	B23-Ma0069479	NCP	ug/kg	< 10	< 10	<1	30%	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2 FTSA)	B23-Ma0069479	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
1H.1H.2H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	B23-Ma0069479	NCP	ug/kg	< 5	< 5	<1	30%	Pass	



### **Environment Testing**

#### Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	N/A
Some samples have been subcontracted	No

#### **Qualifier Codes/Comments**

Code Description

 N09
 Quantification of linear and branched isomers has been conducted as a single total response using the relative response factor for the corresponding linear/branched standard.

 Isotope dilution is used for calibration of each native compound for which an exact labelled analogue is available (Isotope Dilution Quantitation). The isotopically labelled analogues allow identification and recovery correction of the concentration of the associated native PFAS compounds.

Where the native PFAS compound does not have labelled analogue then the quantification is made using the Extracted Internal Standard Analyte with the closest retention time N15 to the analyte and no recovery correction has been made (Internal Standard Quantitation).

#### Authorised by:

Alana Wadsworth Caitlin Breeze Emily Rosenberg Jonathon Angell

Analytical Services Manager Senior Analyst-Metal Senior Analyst-Metal Senior Analyst-PFAS

Glenn Jackson General Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.



### **CERTIFICATE OF ANALYSIS**

Work Order	ES2304523	Page	: 1 of 30	
Client	: HYDROBIOLOGY PTY LTD	Laboratory	: Environmental Division S	ydney
Contact	: JOSH HATTON	Contact	: Customer Services ES	
Address	: 40 TERRIGAL STREET	Address	: 277-289 Woodpark Road	Smithfield NSW Australia 2164
	FIG TREE POCKET 4069			
Telephone	:	Telephone	: +61-2-8784 8555	
Project	: B22096	Date Samples Received	: 13-Feb-2023 11:00	
Order number	:	Date Analysis Commenced	: 14-Feb-2023	
C-O-C number	:	Issue Date	: 09-Mar-2023 15:34	
Sampler	: JOSH HATTON			Hac-MRA NATA
Site	:			
Quote number	: SY/415/22			Accreditation No. 825
No. of samples received	: 47			Accredited for compliance with
No. of samples analysed	: 45			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Franco Lentini	LCMS Coordinator	Sydney Organics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW



#### **General Comments**

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

 Key :
 CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

 LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- EG094: Insufficient sample for analysis for samples ES2304523-#012, #021, #025, #026, #027, #028, #29, #38 and #051.
- EP231X (Biota): ALS NATA accreditation for PFAS in Biota covers all Perfluoroalkyl Sulfonic Acids, Perfluoroalkyl Carboxylic Acids and (n:2) Fluorotelomer Sulfonic Acids in fish (whole and muscle), plants and vegetable matrices, with the exception PFBA (fish only), EtFOSA, MeFOSE, EtFOSE, MeFOSAA, EtFOSAA.
- EP231: Stable isotope enriched internal standards are added to samples prior to extraction. Target compounds have a direct analogous internal standard with the exception of PFPeS, PFHpA, PFDS, PFTrDA and 10:2 FTS. These compounds use an internal standard that is chemically related and has a retention time close to that of the target compound. The DQO for internal standard response is 50-150% of that established at initial calibration. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers. These practices are in line with recommendations in the National Environmental Management Plan for PFAS (Australian HEPA) and also conform to QSM 5.3 (US DoD) requirements.

# Page : 3 of 30 Work Order : ES2304523 Client : HYDROBIOLOGY PTY LTD Project : B22096



Sub-Matrix: BIOTA (Matrix: BIOTA)			Sample ID	AB3 Barramundi a	AB2 Barramundi AB2	AB2 Tandanus AB2	AB3 Redclaw AB3	AB2 Redclaw ALS AB2
		Samplii	ng date / time	30-Jan-2023 00:00	30-Jan-2023 00:00	30-Jan-2023 00:00	31-Jan-2023 00:00	31-Jan-2023 00:00
Compound	CAS Number	LOR	Unit	ES2304523-001	ES2304523-002	ES2304523-003	ES2304523-004	ES2304523-006
				Result	Result	Result	Result	Result
Biota Sample Pre-Preparation								
Ø Sample Description		-		Barramundi	Barramundi	Tandanus	Redclaw	Redclaw
Ø Weight of Sample Prepared		0.1	g	10600	11200	85.0	121	10.0
EG094: Metals in Biota by ICPMS								
Ø Arsenic	7440-38-2	0.05	mg/kg	0.09	0.08	0.16	0.40	0.28
Ø Barium	7440-39-3	0.1	mg/kg	<0.1	0.1	0.7	1.3	2.3
Boron	7440-42-8	5	mg/kg	<5	<5	<5	<5	<5
Ø Chromium	7440-47-3	0.05	mg/kg	<0.05	<0.05	6.85	0.22	0.13
Ø Copper	7440-50-8	0.1	mg/kg	0.4	0.4	1.6	13.0	8.1
Ø Molybdenum	7439-98-7	0.05	mg/kg	<0.05	<0.05	0.77	0.05	<0.05
Ø Selenium	7782-49-2	0.05	mg/kg	0.20	0.16	0.15	0.09	0.08
Strontium	7440-24-6	0.1	mg/kg	0.9	1.1	2.0	17.6	24.9
Uranium	7440-61-1	0.01	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01
Vanadium	7440-62-2	0.5	mg/kg	<0.5	<0.5	1.8	<0.5	<0.5
Zinc	7440-66-6	0.5	mg/kg	5.7	5.6	6.7	20.0	18.8
EP231A: Perfluoroalkyl Sulfonic Acids								
Perfluorobutane sulfonic acid (PFBS)	375-73-5	1	µg/kg	<1	<1	<1	<1	<1
Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	1	µg/kg	<1	<1	<1	<1	<1
Perfluorohexane sulfonic acid (PFHxS)	355-46-4	1	µg/kg	<1	<1	<1	<1	<1
Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	1	µg/kg	<1	<1	<1	<1	<1
Perfluorooctane sulfonic acid (PFOS) - Linear	2795-39-3	1	µg/kg	<1	<1	<1	<1	<1
Perfluorooctane sulfonic acid (PFOS) - Branched		1	µg/kg	<1	<1	<1	<1	<1
Perfluorooctane sulfonic acid (PFOS)	1763-23-1	1	µg/kg	<1	<1	<1	<1	<1
Perfluorodecane sulfonic acid (PFDS)	335-77-3	2	µg/kg	<2	<2	<2	<2	<2
P231B: Perfluoroalkyl Carboxylic Acids								
Perfluorobutanoic acid (PFBA)	375-22-4	5	µg/kg	<5	<5	<5	<5	<5
Perfluoropentanoic acid (PFPeA)	2706-90-3	2	µg/kg	<2	<2	<2	<2	<2
Perfluorohexanoic acid (PFHxA)	307-24-4	1	µg/kg	<1	<1	<1	<1	<1

# Page : 4 of 30 Work Order : ES2304523 Client : HYDROBIOLOGY PTY LTD Project : B22096



ub-Matrix: BIOTA Matrix: BIOTA)			Sample ID	AB3 Barramundi a	AB2 Barramundi AB2	AB2 Tandanus AB2	AB3 Redclaw AB3	AB2 Redclaw ALS AB2
		Sampli	ng date / time	30-Jan-2023 00:00	30-Jan-2023 00:00	30-Jan-2023 00:00	31-Jan-2023 00:00	31-Jan-2023 00:00
Compound	CAS Number	LOR	Unit	ES2304523-001	ES2304523-002	ES2304523-003	ES2304523-004	ES2304523-006
				Result	Result	Result	Result	Result
EP231B: Perfluoroalkyl Carboxylic Acid	ds - Continued							
Perfluoroheptanoic acid (PFHpA)	375-85-9	1	µg/kg	<1	<1	<1	<1	<1
Perfluorooctanoic acid (PFOA)	335-67-1	1	µg/kg	<1	<1	<1	<1	<1
Perfluorononanoic acid (PFNA)	375-95-1	1	µg/kg	<1	<1	<1	<1	<1
Perfluorodecanoic acid (PFDA)	335-76-2	1	µg/kg	<1	<1	<1	<1	<1
Perfluoroundecanoic acid	2058-94-8	1	µg/kg	<1	<1	<1	<1	<1
(PFUnDA)								
Perfluorododecanoic acid	307-55-1	2	µg/kg	<2	<2	<2	<2	<2
(PFDoDA)								
Perfluorotridecanoic acid	72629-94-8	2	µg/kg	<2	<2	<2	<2	<2
(PFTrDA)								
Perfluorotetradecanoic acid	376-06-7	2	µg/kg	<2	<2	<2	<2	<2
(PFTeDA)								
P231C: Perfluoroalkyl Sulfonamides								
Perfluorooctane sulfonamide	754-91-6	5	µg/kg	<5	<5	<5	<5	<5
(FOSA)								
N-Methyl perfluorooctane	31506-32-8	5	µg/kg	<5	<5	<5	<5	<5
sulfonamide (MeFOSA)								
N-Ethyl perfluorooctane	4151-50-2	2	µg/kg	<2	<2	<2	<2	<2
sulfonamide (EtFOSA)								
N-Methyl perfluorooctane	24448-09-7	2	µg/kg	<2	<2	<2	<2	<2
sulfonamidoethanol (MeFOSE)								
N-Ethyl perfluorooctane	1691-99-2	2	µg/kg	<2	<2	<2	<2	<2
sulfonamidoethanol (EtFOSE)								
N-Methyl perfluorooctane	2355-31-9	1	µg/kg	<1	<1	<1	<1	<1
sulfonamidoacetic acid								
(MeFOSAA)	2004 50 0	1		<1	<1	<1	<1	<1
N-Ethyl perfluorooctane sulfonamidoacetic acid	2991-50-6	I	µg/kg	<b>N</b>				
(EtFOSAA)								
P231D: (n:2) Fluorotelomer Sulfonic A		2	ug/kg	<2	<2	<2	<2	<2
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	2	µg/kg	~2	~2	~2	~2	~2
· · ·	27610.07.2	2	μg/kg	<2	<2	<2	<2	<2
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	2	μ <u>θ</u> , κά	72	~2	` <u>`</u>	~2	~2
8:2 Fluorotelomer sulfonic acid	39108-34-4	2	µg/kg	<2	<2	<2	<2	<2
(8:2 FTS)	59100-54-4	-	M3, M3	-	·-	-	·-	· <u>·</u>

Page	5 of 30
Work Order	: ES2304523
Client	: HYDROBIOLOGY PTY LTD
Project	: B22096



Sub-Matrix: BIOTA (Matrix: BIOTA)			Sample ID	AB3 Barramundi a	AB2 Barramundi AB2	AB2 Tandanus AB2	AB3 Redclaw AB3	AB2 Redclaw ALS AB2
		Sampli	ng date / time	30-Jan-2023 00:00	30-Jan-2023 00:00	30-Jan-2023 00:00	31-Jan-2023 00:00	31-Jan-2023 00:00
Compound	CAS Number	LOR	Unit	ES2304523-001	ES2304523-002	ES2304523-003	ES2304523-004	ES2304523-006
				Result	Result	Result	Result	Result
EP231D: (n:2) Fluorotelomer Sulfor	nic Acids - Continued							
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	2	µg/kg	<2	<2	<2	<2	<2
EP231P: PFAS Sums								
^ Sum of PFAS		1	µg/kg	<1	<1	<1	<1	<1
[^] Sum of PFHxS and PFOS	355-46-4/1763-23- 1	1	µg/kg	<1	<1	<1	<1	<1
EP231S: PFAS Surrogate								
13C4-PFOS		1	%	85.8	90.2	96.6	105	102
13C8-PFOA		1	%	97.2	97.9	98.2	95.4	94.6

# Page : 6 of 30 Work Order : ES2304523 Client : HYDROBIOLOGY PTY LTD Project : B22096



Sub-Matrix: BIOTA (Matrix: BIOTA)			Sample ID	AB3 Hardyhead AB3	AB3 Glassfish AB3	AB3 Macrobrachium	AB2 Hardyhead AB2	AB2 Macrobrachium AB2
		Sampli	ng date / time	31-Jan-2023 00:00	31-Jan-2023 00:00	31-Jan-2023 00:00	31-Jan-2023 00:00	31-Jan-2023 00:00
Compound	CAS Number	LOR	Unit	ES2304523-007	ES2304523-008	ES2304523-009	ES2304523-011	ES2304523-012
				Result	Result	Result	Result	Result
Biota Sample Pre-Preparation								
Ø Sample Description		-		Hardyhead	Glassfish	Macrobrachium	Hardyhead	Macrobrachium
Ø Weight of Sample Prepared		0.1	g	27.0	8.0	16.0	6.0	1.3
EG094: Metals in Biota by ICPMS								
ØArsenic	7440-38-2	0.05	mg/kg	0.22	0.16	0.42	0.22	
øBarium	7440-39-3	0.1	mg/kg	2.4	3.8	4.4	5.5	
ø Boron	7440-42-8	5	mg/kg	<5	<5	<5	<5	
Ø Chromium	7440-47-3	0.05	mg/kg	1.40	0.22	0.45	0.26	
ø Copper	7440-50-8	0.1	mg/kg	0.6	0.8	17.6	0.6	
ø Molybdenum	7439-98-7	0.05	mg/kg	0.18	0.05	0.07	<0.05	
Ø Selenium	7782-49-2	0.05	mg/kg	0.20	0.26	0.18	0.14	
9 Strontium	7440-24-6	0.1	mg/kg	52.1	93.5	106	104	
Ø Uranium	7440-61-1	0.01	mg/kg	<0.01	<0.01	<0.01	<0.01	
Ø Vanadium	7440-62-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Ø Zinc	7440-66-6	0.5	mg/kg	53.8	41.3	24.6	82.6	
EP231A: Perfluoroalkyl Sulfonic Acids								
Perfluorobutane sulfonic acid	375-73-5	1	µg/kg	<1	<1	<1	<1	<1
(PFBS)								
Perfluoropentane sulfonic acid	2706-91-4	1	µg/kg	<1	<1	<1	<1	<1
(PFPeS)								
Perfluorohexane sulfonic acid	355-46-4	1	µg/kg	<1	<1	<1	<1	<1
(PFHxS)								
Perfluoroheptane sulfonic acid	375-92-8	1	µg/kg	<1	<1	<1	<1	<1
(PFHpS)								
Perfluorooctane sulfonic acid	2795-39-3	1	µg/kg	<1	<1	<1	<1	<1
(PFOS) - Linear		4		-1			-1	
Perfluorooctane sulfonic acid (PFOS) - Branched		1	µg/kg	<1	<1	<1	<1	<1
Perfluorooctane sulfonic acid (PFOS)	1763-23-1	1	µg/kg	<1	<1	<1	<1	<1
(PFOS) Perfluorodecane sulfonic acid	335-77-3	2	µg/kg	<2	<2	<2	<2	<2
(PFDS)	335-11-3	۷	P3/23	<u>۲</u>	~ <u>∠</u>	<u>۲</u>	~2	~~
EP231B: Perfluoroalkyl Carboxylic Acids								
Perfluorobutanoic acid (PFBA)	375-22-4	5	µg/kg	<5	<5	<5	<5	<5
Perfluoropentanoic acid (PFPeA)	2706-90-3	2	µg/kg	<2	<2	<2	<2	<2
Perfluorohexanoic acid (PFHxA)	307-24-4	1	µg/kg	<1	<1	<1	<1	<1

# Page : 7 of 30 Work Order : ES2304523 Client : HYDROBIOLOGY PTY LTD Project : B22096



Sub-Matrix: BIOTA (Matrix: BIOTA)			Sample ID	AB3 Hardyhead AB3	AB3 Glassfish AB3	AB3 Macrobrachium	AB2 Hardyhead AB2	AB2 Macrobrachium AB2
		Sampli	ng date / time	31-Jan-2023 00:00	31-Jan-2023 00:00	31-Jan-2023 00:00	31-Jan-2023 00:00	31-Jan-2023 00:00
Compound	CAS Number	LOR	Unit	ES2304523-007	ES2304523-008	ES2304523-009	ES2304523-011	ES2304523-012
				Result	Result	Result	Result	Result
EP231B: Perfluoroalkyl Carboxylic A	cids - Continued							
Perfluoroheptanoic acid (PFHpA)	375-85-9	1	µg/kg	<1	<1	<1	<1	<1
Perfluorooctanoic acid (PFOA)	335-67-1	1	µg/kg	<1	<1	<1	<1	<1
Perfluorononanoic acid (PFNA)	375-95-1	1	µg/kg	<1	<1	<1	<1	<1
Perfluorodecanoic acid (PFDA)	335-76-2	1	µg/kg	<1	<1	<1	<1	<1
Perfluoroundecanoic acid (PFUnDA)	2058-94-8	1	µg/kg	<1	<1	<1	<1	<1
Perfluorododecanoic acid (PFDoDA)	307-55-1	2	µg/kg	<2	<2	<2	<2	<2
Perfluorotridecanoic acid (PFTrDA)	72629-94-8	2	µg/kg	<2	<2	<2	<2	<2
Perfluorotetradecanoic acid (PFTeDA)	376-06-7	2	µg/kg	<2	<2	<2	<2	<2
EP231C: Perfluoroalkyl Sulfonamides			1					
Perfluorooctane sulfonamide (FOSA)	754-91-6	5	µg/kg	<5	<5	<5	<5	<5
N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	5	µg/kg	<5	<5	<5	<5	<5
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	2	µg/kg	<2	<2	<2	<2	<2
N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	2	µg/kg	<2	<2	<2	<2	<2
N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	2	µg/kg	<2	<2	<2	<2	<2
N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	1	µg/kg	<1	<1	<1	<1	<1
N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	1	µg/kg	<1	<1	<1	<1	<1
EP231D: (n:2) Fluorotelomer Sulfonio	c Acids							
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	2	µg/kg	<2	<2	<2	<2	<2
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	2	µg/kg	<2	<2	<2	<2	<2
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	2	µg/kg	<2	<2	<2	<2	<2

Page	: 8 of 30
Work Order	ES2304523
Client	: HYDROBIOLOGY PTY LTD
Project	: B22096



Sub-Matrix: BIOTA (Matrix: BIOTA)			Sample ID	AB3 Hardyhead AB3	AB3 Glassfish AB3	AB3 Macrobrachium	AB2 Hardyhead AB2	AB2 Macrobrachium AB2
		Sampli	ng date / time	31-Jan-2023 00:00	31-Jan-2023 00:00	31-Jan-2023 00:00	31-Jan-2023 00:00	31-Jan-2023 00:00
Compound	CAS Number	LOR	Unit	ES2304523-007	ES2304523-008	ES2304523-009	ES2304523-011	ES2304523-012
				Result	Result	Result	Result	Result
EP231D: (n:2) Fluorotelomer Sulfor	nic Acids - Continued							
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	2	µg/kg	<2	<2	<2	<2	<2
EP231P: PFAS Sums								
^ Sum of PFAS		1	µg/kg	<1	<1	<1	<1	<1
^ Sum of PFHxS and PFOS	355-46-4/1763-23- 1	1	µg/kg	<1	<1	<1	<1	<1
EP231S: PFAS Surrogate								
13C4-PFOS		1	%	92.6	93.6	98.8	100	112
13C8-PFOA		1	%	93.8	90.8	94.4	99.9	102

# Page : 9 of 30 Work Order : ES2304523 Client : HYDROBIOLOGY PTY LTD Project : B22096



Sub-Matrix: BIOTA Matrix: BIOTA)			Sample ID	AB9 Hyrtlii AB9	AB9 Glassfish AB9	AB9 Macrobrachium AB9	AB9 Tandanus AB9	AB8 Hardyhead AB8
		Sampli	ng date / time	01-Feb-2023 00:00	01-Feb-2023 00:00	01-Feb-2023 00:00	01-Feb-2023 00:00	01-Feb-2023 00:00
Compound	CAS Number	LOR	Unit	ES2304523-013	ES2304523-014	ES2304523-015	ES2304523-016	ES2304523-017
				Result	Result	Result	Result	Result
Biota Sample Pre-Preparation								
Ø Sample Description		-		Hyrtlii	Glassfish	Macrobrachium	Tandanus	Hardyhead
Ø Weight of Sample Prepared		0.1	g	15.0	19.0	4.3	12.5	17.0
EG094: Metals in Biota by ICPMS								
ØArsenic	7440-38-2	0.05	mg/kg	<0.05	0.17	0.33	<0.05	0.20
Barium	7440-39-3	0.1	mg/kg	<0.1	1.6	19.2	0.2	5.6
Boron	7440-42-8	5	mg/kg	<5	<5	<5	<5	<5
Ø Chromium	7440-47-3	0.05	mg/kg	0.60	0.09	0.42	<0.05	0.25
Ø Copper	7440-50-8	0.1	mg/kg	0.4	0.5	16.7	0.3	0.5
Ø Molybdenum	7439-98-7	0.05	mg/kg	0.07	<0.05	0.06	<0.05	0.05
Ø Selenium	7782-49-2	0.05	mg/kg	0.14	0.20	0.22	0.12	0.11
Strontium	7440-24-6	0.1	mg/kg	1.0	41.6	78.4	0.5	79.6
Uranium	7440-61-1	0.01	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01
Vanadium	7440-62-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Zinc	7440-66-6	0.5	mg/kg	11.5	34.9	29.8	7.0	50.0
EP231A: Perfluoroalkyl Sulfonic Acids								
Perfluorobutane sulfonic acid	375-73-5	1	µg/kg	<1	<1	<1	<1	<1
(PFBS)								
Perfluoropentane sulfonic acid	2706-91-4	1	µg/kg	<1	<1	<1	<1	<1
(PFPeS)								
Perfluorohexane sulfonic acid	355-46-4	1	µg/kg	<1	<1	<1	<1	<1
(PFHxS)								
Perfluoroheptane sulfonic acid	375-92-8	1	µg/kg	<1	<1	<1	<1	<1
(PFHpS)								
Perfluorooctane sulfonic acid	2795-39-3	1	µg/kg	<1	<1	<1	<1	64
(PFOS) - Linear								
Perfluorooctane sulfonic acid (PFOS) - Branched		1	µg/kg	<1	<1	<1	<1	4
Perfluorooctane sulfonic acid (PFOS)	1763-23-1	1	µg/kg	<1	<1	<1	<1	68
Perfluorodecane sulfonic acid (PFDS)	335-77-3	2	µg/kg	<2	<2	<2	<2	<2
EP231B: Perfluoroalkyl Carboxylic Acids								1
Perfluorobutanoic acid (PFBA)	375-22-4	5	µg/kg	<5	<5	<5	<5	<5
Perfluoropentanoic acid (PFPeA)	2706-90-3	2	μg/kg	<2	<2	<2	<2	<2
Perfluorohexanoic acid (PFHxA)	307-24-4	1	μg/kg μg/kg	<1	<1	<1	<1	<1

# Page : 10 of 30 Work Order : ES2304523 Client : HYDROBIOLOGY PTY LTD Project : B22096



Sub-Matrix: BIOTA (Matrix: BIOTA)			Sample ID	AB9 Hyrtlii AB9	AB9 Glassfish AB9	AB9 Macrobrachium AB9	AB9 Tandanus AB9	AB8 Hardyhead AB8
		Sampli	ng date / time	01-Feb-2023 00:00	01-Feb-2023 00:00	01-Feb-2023 00:00	01-Feb-2023 00:00	01-Feb-2023 00:00
Compound	CAS Number	LOR	Unit	ES2304523-013	ES2304523-014	ES2304523-015	ES2304523-016	ES2304523-017
				Result	Result	Result	Result	Result
EP231B: Perfluoroalkyl Carboxylic Ad	cids - Continued							
Perfluoroheptanoic acid (PFHpA)	375-85-9	1	µg/kg	<1	<1	<1	<1	<1
Perfluorooctanoic acid (PFOA)	335-67-1	1	µg/kg	<1	<1	<1	<1	<1
Perfluorononanoic acid (PFNA)	375-95-1	1	µg/kg	<1	<1	<1	<1	<1
Perfluorodecanoic acid (PFDA)	335-76-2	1	µg/kg	<1	<1	<1	<1	<1
Perfluoroundecanoic acid (PFUnDA)	2058-94-8	1	µg/kg	<1	<1	<1	<1	<1
Perfluorododecanoic acid (PFDoDA)	307-55-1	2	µg/kg	<2	<2	<2	<2	<2
Perfluorotridecanoic acid (PFTrDA)	72629-94-8	2	µg/kg	<2	<2	<2	<2	<2
Perfluorotetradecanoic acid (PFTeDA)	376-06-7	2	µg/kg	<2	<2	<2	<2	<2
P231C: Perfluoroalkyl Sulfonamides								
Perfluorooctane sulfonamide (FOSA)	754-91-6	5	µg/kg	<5	<5	<5	<5	<5
N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	5	µg/kg	<5	<5	<5	<5	<5
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	2	µg/kg	<2	<2	<2	<2	<2
N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	2	µg/kg	<2	<2	<2	<2	<2
N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	2	µg/kg	<2	<2	<2	<2	<2
N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	1	µg/kg	<1	<1	<1	<1	<1
N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	1	µg/kg	<1	<1	<1	<1	<1
EP231D: (n:2) Fluorotelomer Sulfonic	Acids							
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	2	µg/kg	<2	<2	<2	<2	<2
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	2	µg/kg	<2	<2	<2	<2	<2
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	2	µg/kg	<2	<2	<2	<2	<2

Page	: 11 of 30
Work Order	: ES2304523
Client	: HYDROBIOLOGY PTY LTD
Project	: B22096



Sub-Matrix: BIOTA (Matrix: BIOTA)			Sample ID	AB9 Hyrtlii AB9	AB9 Glassfish AB9	AB9 Macrobrachium AB9	AB9 Tandanus AB9	AB8 Hardyhead AB8
		Sampli	ng date / time	01-Feb-2023 00:00	01-Feb-2023 00:00	01-Feb-2023 00:00	01-Feb-2023 00:00	01-Feb-2023 00:00
Compound	CAS Number	LOR	Unit	ES2304523-013	ES2304523-014	ES2304523-015	ES2304523-016	ES2304523-017
				Result	Result	Result	Result	Result
EP231D: (n:2) Fluorotelomer Sulfor	nic Acids - Continued							
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	2	µg/kg	<2	<2	<2	<2	<2
EP231P: PFAS Sums								
^ Sum of PFAS		1	µg/kg	<1	<1	<1	<1	68
[^] Sum of PFHxS and PFOS	355-46-4/1763-23- 1	1	µg/kg	<1	<1	<1	<1	68
EP231S: PFAS Surrogate								
13C4-PFOS		1	%	97.2	95.8	96.5	104	105
13C8-PFOA		1	%	102	97.8	97.2	97.6	97.4

# Page : 12 of 30 Work Order : ES2304523 Client : HYDROBIOLOGY PTY LTD Project : B22096



Sub-Matrix: BIOTA (Matrix: BIOTA)			Sample ID	AB8 Hyrtlii AB8	AB8 Glassfish AB8	AB8 Yellowbelly AB8	AB4 Atyidae AB4	AB4 Tandanus AB4
		Sampli	ng date / time	01-Feb-2023 00:00	01-Feb-2023 00:00	01-Feb-2023 00:00	02-Feb-2023 00:00	02-Feb-2023 00:00
Compound	CAS Number	LOR	Unit	ES2304523-018	ES2304523-019	ES2304523-020	ES2304523-021	ES2304523-022
				Result	Result	Result	Result	Result
Biota Sample Pre-Preparation								
Ø Sample Description		-		Hyrtlii	Glassfish	Yellowbelly	Atyidae	Tandanus
Ø Weight of Sample Prepared		0.1	g	13.0	15.0	154	1.9	112
EG094: Metals in Biota by ICPMS								
ØArsenic	7440-38-2	0.05	mg/kg	<0.05	0.15	0.06		0.16
Barium	7440-39-3	0.1	mg/kg	0.3	6.0	1.0		<0.1
Boron	7440-42-8	5	mg/kg	<5	<5	<5		<5
Ø Chromium	7440-47-3	0.05	mg/kg	<0.05	0.48	<0.05		<0.05
Ø Copper	7440-50-8	0.1	mg/kg	0.3	0.6	0.4		0.2
ø Molybdenum	7439-98-7	0.05	mg/kg	<0.05	0.09	<0.05		<0.05
Ø Selenium	7782-49-2	0.05	mg/kg	0.21	0.13	0.52		0.12
ð Strontium	7440-24-6	0.1	mg/kg	7.6	82.6	27.0		0.5
Uranium	7440-61-1	0.01	mg/kg	<0.01	<0.01	<0.01		<0.01
Vanadium	7440-62-2	0.5	mg/kg	<0.5	<0.5	<0.5		<0.5
ØZinc	7440-66-6	0.5	mg/kg	14.1	40.2	9.8		5.2
EP231A: Perfluoroalkyl Sulfonic Acids								
Perfluorobutane sulfonic acid	375-73-5	1	µg/kg	<1	<1	<1	<1	<1
(PFBS)								
Perfluoropentane sulfonic acid	2706-91-4	1	µg/kg	<1	<1	<1	<1	<1
(PFPeS)								
Perfluorohexane sulfonic acid	355-46-4	1	µg/kg	<1	<1	<1	<1	1
(PFHxS)								
Perfluoroheptane sulfonic acid	375-92-8	1	µg/kg	<1	<1	<1	<1	<1
(PFHpS)							-	
Perfluorooctane sulfonic acid	2795-39-3	1	µg/kg	7	82	4	3	3
(PFOS) - Linear		1		1	7		-1	4
Perfluorooctane sulfonic acid (PFOS) - Branched		1	µg/kg	1		1	<1	1
Perfluorooctane sulfonic acid	1763-23-1	1	µg/kg	8	89	5	3	4
(PFOS)								
Perfluorodecane sulfonic acid	335-77-3	2	µg/kg	<2	<2	<2	<2	<2
(PFDS)								
P231B: Perfluoroalkyl Carboxylic Acids								
Perfluorobutanoic acid (PFBA)	375-22-4	5	µg/kg	<5	<5	<5	<5	<5
Perfluoropentanoic acid (PFPeA)	2706-90-3	2	µg/kg	<2	<2	<2	<2	<2
Perfluorohexanoic acid (PFHxA)	307-24-4	1	µg/kg	<1	<1	<1	<1	<1

# Page : 13 of 30 Work Order : ES2304523 Client : HYDROBIOLOGY PTY LTD Project : B22096



Sub-Matrix: <b>BIOTA</b> (Matrix: <b>BIOTA</b> )			Sample ID	AB8 Hyrtlii AB8	AB8 Glassfish AB8	AB8 Yellowbelly AB8	AB4 Atyidae AB4	AB4 Tandanus AB4
		Sampli	ng date / time	01-Feb-2023 00:00	01-Feb-2023 00:00	01-Feb-2023 00:00	02-Feb-2023 00:00	02-Feb-2023 00:00
Compound	CAS Number	LOR	Unit	ES2304523-018	ES2304523-019	ES2304523-020	ES2304523-021	ES2304523-022
				Result	Result	Result	Result	Result
EP231B: Perfluoroalkyl Carboxylic Ac	cids - Continued							
Perfluoroheptanoic acid (PFHpA)	375-85-9	1	µg/kg	<1	<1	<1	<1	<1
Perfluorooctanoic acid (PFOA)	335-67-1	1	µg/kg	<1	<1	<1	<1	<1
Perfluorononanoic acid (PFNA)	375-95-1	1	µg/kg	<1	<1	<1	<1	<1
Perfluorodecanoic acid (PFDA)	335-76-2	1	µg/kg	<1	<1	<1	<1	<1
Perfluoroundecanoic acid (PFUnDA)	2058-94-8	1	µg/kg	<1	<1	<1	<1	<1
Perfluorododecanoic acid (PFDoDA)	307-55-1	2	µg/kg	<2	<2	<2	<2	<2
Perfluorotridecanoic acid (PFTrDA)	72629-94-8	2	µg/kg	<2	<2	<2	<2	<2
Perfluorotetradecanoic acid (PFTeDA)	376-06-7	2	µg/kg	<2	<2	<2	<2	<2
P231C: Perfluoroalkyl Sulfonamides								
Perfluorooctane sulfonamide (FOSA)	754-91-6	5	µg/kg	<5	<5	<5	<5	<5
N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	5	µg/kg	<5	<5	<5	<5	<5
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	2	µg/kg	<2	<2	<2	<2	<2
N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	2	µg/kg	<2	<2	<2	<2	<2
N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	2	µg/kg	<2	<2	<2	<2	<2
N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	1	µg/kg	<1	<1	<1	<1	<1
N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	1	µg/kg	<1	<1	<1	<1	<1
EP231D: (n:2) Fluorotelomer Sulfonic	Acids							
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	2	µg/kg	<2	<2	<2	<2	<2
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	2	µg/kg	<2	<2	<2	<2	<2
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	2	µg/kg	<2	<2	<2	<2	<2

Page	: 14 of 30
Work Order	: ES2304523
Client	: HYDROBIOLOGY PTY LTD
Project	: B22096



Sub-Matrix: <b>BIOTA</b> (Matrix: <b>BIOTA</b> )			Sample ID	AB8 Hyrtlii AB8	AB8 Glassfish AB8	AB8 Yellowbelly AB8	AB4 Atyidae AB4	AB4 Tandanus AB4
		Sampli	ng date / time	01-Feb-2023 00:00	01-Feb-2023 00:00	01-Feb-2023 00:00	02-Feb-2023 00:00	02-Feb-2023 00:00
Compound	CAS Number	LOR	Unit	ES2304523-018	ES2304523-019	ES2304523-020	ES2304523-021	ES2304523-022
				Result	Result	Result	Result	Result
EP231D: (n:2) Fluorotelomer Sulfor	nic Acids - Continued							
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	2	µg/kg	<2	<2	<2	<2	<2
EP231P: PFAS Sums								
^ Sum of PFAS		1	µg/kg	8	89	5	3	5
[^] Sum of PFHxS and PFOS	355-46-4/1763-23- 1	1	µg/kg	8	89	5	3	5
EP231S: PFAS Surrogate								
13C4-PFOS		1	%	65.2	100	93.2	91.4	93.9
13C8-PFOA		1	%	79.1	93.2	121	111	111

# Page : 15 of 30 Work Order : ES2304523 Client : HYDROBIOLOGY PTY LTD Project : B22096



Sub-Matrix: BIOTA (Matrix: BIOTA)			Sample ID	AB4 Hardyhead AB4	AB4 Sleepy cod AB4	AB5 Glassfish AB5	AB7 Atyidae AB7	AB7 Glassfish AB7
		Samplii	ng date / time	02-Feb-2023 00:00	02-Feb-2023 00:00	02-Feb-2023 00:00	03-Feb-2023 00:00	03-Feb-2023 00:00
Compound	CAS Number	LOR	Unit	ES2304523-023	ES2304523-025	ES2304523-026	ES2304523-027	ES2304523-028
				Result	Result	Result	Result	Result
Biota Sample Pre-Preparation								
Ø Sample Description		-		Hardyhead	Sleepy cod	Glassfish	Atyidae	Glassfish
Ø Weight of Sample Prepared		0.1	g	2.2	5.1	0.9	1.2	1.4
EG094: Metals in Biota by ICPMS								
Ø Arsenic	7440-38-2	0.05	mg/kg	0.51				
Ø Barium	7440-39-3	0.1	mg/kg	12.9				
Boron	7440-42-8	5	mg/kg	<5				
ØChromium	7440-47-3	0.05	mg/kg	0.12				
Ø Copper	7440-50-8	0.1	mg/kg	0.7				
ø Molybdenum	7439-98-7	0.05	mg/kg	<0.05				
Ø Selenium	7782-49-2	0.05	mg/kg	0.18				
9 Strontium	7440-24-6	0.1	mg/kg	109				
Uranium	7440-61-1	0.01	mg/kg	<0.01				
Vanadium	7440-62-2	0.5	mg/kg	<0.5				
ØZinc	7440-66-6	0.5	mg/kg	96.5				
EP231A: Perfluoroalkyl Sulfonic Acids								
Perfluorobutane sulfonic acid	375-73-5	1	µg/kg	<1	<1	<1	<1	<1
(PFBS)								
Perfluoropentane sulfonic acid	2706-91-4	1	µg/kg	<1	<1	<1	<1	<1
(PFPeS)								
Perfluorohexane sulfonic acid	355-46-4	1	µg/kg	<1	<1	<1	<1	<1
(PFHxS)								
Perfluoroheptane sulfonic acid	375-92-8	1	µg/kg	<1	<1	<1	<1	<1
(PFHpS)		4		-1		05		
Perfluorooctane sulfonic acid	2795-39-3	1	µg/kg	<1	1	35	28	66
(PFOS) - Linear		1		<1	<1	5	3	18
Perfluorooctane sulfonic acid (PFOS) - Branched		I	µg/kg	~1		5	, э	10
Perfluorooctane sulfonic acid	1763-23-1	1	µg/kg	<1	1	40	31	84
(PFOS)								
Perfluorodecane sulfonic acid	335-77-3	2	µg/kg	<2	<2	<2	<2	<2
(PFDS)								
EP231B: Perfluoroalkyl Carboxylic Acids								
Perfluorobutanoic acid (PFBA)	375-22-4	5	µg/kg	<5	<5	<5	<5	<5
Perfluoropentanoic acid (PFPeA)	2706-90-3	2	µg/kg	<2	<2	<2	<2	<2
Perfluorohexanoic acid (PFHxA)	307-24-4	1	µg/kg	<1	<1	<1	<1	<1

# Page : 16 of 30 Work Order : ES2304523 Client : HYDROBIOLOGY PTY LTD Project : B22096



ub-Matrix: BIOTA Matrix: BIOTA)			Sample ID	AB4 Hardyhead AB4	AB4 Sleepy cod AB4	AB5 Glassfish AB5	AB7 Atyidae AB7	AB7 Glassfish AB7
		Sampli	ng date / time	02-Feb-2023 00:00	02-Feb-2023 00:00	02-Feb-2023 00:00	03-Feb-2023 00:00	03-Feb-2023 00:00
Compound	CAS Number	LOR	Unit	ES2304523-023	ES2304523-025	ES2304523-026	ES2304523-027	ES2304523-028
				Result	Result	Result	Result	Result
P231B: Perfluoroalkyl Carboxylic Aci	ids - Continued							
Perfluoroheptanoic acid (PFHpA)	375-85-9	1	µg/kg	<1	<1	<1	<1	<1
Perfluorooctanoic acid (PFOA)	335-67-1	1	µg/kg	<1	<1	<1	<1	<1
Perfluorononanoic acid (PFNA)	375-95-1	1	µg/kg	<1	<1	<1	<1	<1
Perfluorodecanoic acid (PFDA)	335-76-2	1	µg/kg	<1	<1	<1	<1	<1
Perfluoroundecanoic acid	2058-94-8	1	µg/kg	<1	<1	<1	<1	<1
(PFUnDA)								
Perfluorododecanoic acid	307-55-1	2	µg/kg	<2	<2	<2	<2	<2
(PFDoDA)								
Perfluorotridecanoic acid	72629-94-8	2	µg/kg	<2	<2	<2	<2	<2
(PFTrDA)								
Perfluorotetradecanoic acid	376-06-7	2	µg/kg	<2	<2	<2	<2	<2
(PFTeDA)								
P231C: Perfluoroalkyl Sulfonamides								
Perfluorooctane sulfonamide	754-91-6	5	µg/kg	<5	<5	<5	<5	<5
(FOSA)								
N-Methyl perfluorooctane	31506-32-8	5	µg/kg	<5	<5	<5	<5	<5
sulfonamide (MeFOSA)								
N-Ethyl perfluorooctane	4151-50-2	2	µg/kg	<2	<2	<2	<2	<2
sulfonamide (EtFOSA)								
N-Methyl perfluorooctane	24448-09-7	2	µg/kg	<2	<2	<2	<2	<2
sulfonamidoethanol (MeFOSE)		-						
N-Ethyl perfluorooctane	1691-99-2	2	µg/kg	<2	<2	<2	<2	<2
sulfonamidoethanol (EtFOSE)								
N-Methyl perfluorooctane	2355-31-9	1	µg/kg	<1	<1	<1	<1	<1
sulfonamidoacetic acid								
(MeFOSAA)	2004 50 0	1	µg/kg	<1	<1	<1	<1	<1
N-Ethyl perfluorooctane sulfonamidoacetic acid	2991-50-6	ſ	μ <u>θ</u> , κά	21			1	
(EtFOSAA)								
· · · · ·	A cide							
P231D: (n:2) Fluorotelomer Sulfonic	Acids 757124-72-4	2	ug/kg	<2	<2	<2	<2	<2
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	131124-12-4	2	µg/kg	72	~~	~2	~2	~2
(4:2 F IS) 6:2 Fluorotelomer sulfonic acid	27619-97-2	2	µg/kg	<2	<2	<2	<2	<2
(6:2 FTS)	21019-91-2	-	P9, K9	<u>۲</u>	-2	· · ·	·L	2
8:2 Fluorotelomer sulfonic acid	39108-34-4	2	µg/kg	<2	<2	<2	<2	<2
(8:2 FTS)	39100-34-4	-	60,64	· <b>-</b>	·-			·-

Page	: 17 of 30
Work Order	: ES2304523
Client	: HYDROBIOLOGY PTY LTD
Project	: B22096



Sub-Matrix: BIOTA (Matrix: BIOTA)			Sample ID	AB4 Hardyhead AB4	AB4 Sleepy cod AB4	AB5 Glassfish AB5	AB7 Atyidae AB7	AB7 Glassfish AB7
		Sampli	ing date / time	02-Feb-2023 00:00	02-Feb-2023 00:00	02-Feb-2023 00:00	03-Feb-2023 00:00	03-Feb-2023 00:00
Compound	CAS Number	LOR	Unit	ES2304523-023	ES2304523-025	ES2304523-026	ES2304523-027	ES2304523-028
				Result	Result	Result	Result	Result
EP231D: (n:2) Fluorotelomer Sulfo	nic Acids - Continued							
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	2	µg/kg	<2	<2	<2	<2	<2
EP231P: PFAS Sums								
^ Sum of PFAS		1	µg/kg	<1	1	40	31	84
^ Sum of PFHxS and PFOS	355-46-4/1763-23- 1	1	µg/kg	<1	1	40	31	84
EP231S: PFAS Surrogate								
13C4-PFOS		1	%	95.0	98.8	103	100	103
13C8-PFOA		1	%	112	118	115	115	112

# Page : 18 of 30 Work Order : ES2304523 Client : HYDROBIOLOGY PTY LTD Project : B22096



Sub-Matrix: BIOTA (Matrix: BIOTA)			Sample ID	AB7 Hardyhead AB7	AB1 Redclaw AB1	AB1 Tandanus AB1	AB1 Hardyhead AB1	AB1 Glassfish AB1
		Samplii	ng date / time	03-Feb-2023 00:00	04-Feb-2023 00:00	04-Feb-2023 00:00	04-Feb-2023 00:00	04-Feb-2023 00:00
Compound	CAS Number	LOR	Unit	ES2304523-029	ES2304523-030	ES2304523-031	ES2304523-032	ES2304523-033
			-	Result	Result	Result	Result	Result
Biota Sample Pre-Preparation								
Ø Sample Description		-		Hardyhead	Redclaw	Tandanus	Hardyhead	Glassfish
Ø Weight of Sample Prepared		0.1	g	0.6	63.0	238	13.0	7.9
EG094: Metals in Biota by ICPMS								
Ø Arsenic	7440-38-2	0.05	mg/kg		0.50	0.12	0.21	0.20
Ø Barium	7440-39-3	0.1	mg/kg		47.5	0.2	7.4	6.1
Boron	7440-42-8	5	mg/kg		<5	<5	<5	<5
Ø Chromium	7440-47-3	0.05	mg/kg		2.41	<0.05	0.18	0.79
Ø Copper	7440-50-8	0.1	mg/kg		15.7	0.7	0.6	1.2
ø Molybdenum	7439-98-7	0.05	mg/kg		0.33	<0.05	<0.05	0.10
Ø Selenium	7782-49-2	0.05	mg/kg		0.07	0.26	0.17	0.25
9 Strontium	7440-24-6	0.1	mg/kg		134	1.9	93.6	95.6
Uranium	7440-61-1	0.01	mg/kg		<0.01	<0.01	<0.01	<0.01
Ø Vanadium	7440-62-2	0.5	mg/kg		<0.5	<0.5	<0.5	<0.5
ð Zinc	7440-66-6	0.5	mg/kg		15.3	6.1	66.7	48.6
EP231A: Perfluoroalkyl Sulfonic Acids								
Perfluorobutane sulfonic acid (PFBS)	375-73-5	1	µg/kg	<2	<1	<1	<1	<1
Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	1	µg/kg	<2	<1	<1	<1	<1
Perfluorohexane sulfonic acid (PFHxS)	355-46-4	1	µg/kg	<2	<1	<1	<1	<1
Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	1	µg/kg	<2	<1	<1	<1	<1
Perfluorooctane sulfonic acid (PFOS) - Linear	2795-39-3	1	µg/kg	30	<1	<1	<1	<1
Perfluorooctane sulfonic acid (PFOS) - Branched		1	µg/kg	10	<1	<1	<1	<1
Perfluorooctane sulfonic acid (PFOS)	1763-23-1	1	µg/kg	40	<1	<1	<1	<1
Perfluorodecane sulfonic acid (PFDS)	335-77-3	2	µg/kg	<2	<2	<2	<2	<2
EP231B: Perfluoroalkyl Carboxylic Acids	;							
Perfluorobutanoic acid (PFBA)	375-22-4	5	µg/kg	<5	<5	<5	<5	<5
Perfluoropentanoic acid (PFPeA)	2706-90-3	2	µg/kg	<2	<2	<2	<2	<2
Perfluorohexanoic acid (PFHxA)	307-24-4	1	µg/kg	<2	<1	<1	<1	<1

# Page : 19 of 30 Work Order : ES2304523 Client : HYDROBIOLOGY PTY LTD Project : B22096



Sub-Matrix: BIOTA (Matrix: BIOTA)			Sample ID	AB7 Hardyhead AB7	AB1 Redclaw AB1	AB1 Tandanus AB1	AB1 Hardyhead AB1	AB1 Glassfish AB1
		Sampli	ng date / time	03-Feb-2023 00:00	04-Feb-2023 00:00	04-Feb-2023 00:00	04-Feb-2023 00:00	04-Feb-2023 00:00
Compound	CAS Number	LOR	Unit	ES2304523-029	ES2304523-030	ES2304523-031	ES2304523-032	ES2304523-033
				Result	Result	Result	Result	Result
P231B: Perfluoroalkyl Carboxylic A	cids - Continued							
Perfluoroheptanoic acid (PFHpA)	375-85-9	1	µg/kg	<2	<1	<1	<1	<1
Perfluorooctanoic acid (PFOA)	335-67-1	1	µg/kg	<2	<1	<1	<1	<1
Perfluorononanoic acid (PFNA)	375-95-1	1	µg/kg	<2	<1	<1	<1	<1
Perfluorodecanoic acid (PFDA)	335-76-2	1	µg/kg	<2	<1	<1	<1	<1
Perfluoroundecanoic acid (PFUnDA)	2058-94-8	1	µg/kg	<2	<1	<1	<1	<1
Perfluorododecanoic acid (PFDoDA)	307-55-1	2	µg/kg	<2	<2	<2	<2	<2
Perfluorotridecanoic acid (PFTrDA)	72629-94-8	2	µg/kg	<2	<2	<2	<2	<2
Perfluorotetradecanoic acid (PFTeDA)	376-06-7	2	µg/kg	<6	<2	<2	<2	<2
EP231C: Perfluoroalkyl Sulfonamides								
Perfluorooctane sulfonamide (FOSA)	754-91-6	5	µg/kg	<5	<5	<5	<5	<5
N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	5	µg/kg	<6	<5	<5	<5	<5
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	2	µg/kg	<6	<2	<2	<2	<2
N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	2	µg/kg	<6	<2	<2	<2	<2
N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	2	µg/kg	<6	<2	<2	<2	<2
N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	1	µg/kg	<2	<1	<1	<1	<1
N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	1	µg/kg	<2	<1	<1	<1	<1
EP231D: (n:2) Fluorotelomer Sulfonio	c Acids							
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	2	µg/kg	<2	<2	<2	<2	<2
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	2	µg/kg	<2	<2	<2	<2	<2
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	2	µg/kg	<2	<2	<2	<2	<2

Page	: 20 of 30
Work Order	ES2304523
Client	: HYDROBIOLOGY PTY LTD
Project	: B22096



Sub-Matrix: BIOTA (Matrix: BIOTA)			Sample ID	AB7 Hardyhead AB7	AB1 Redclaw AB1	AB1 Tandanus AB1	AB1 Hardyhead AB1	AB1 Glassfish AB1
		Sampli	ng date / time	03-Feb-2023 00:00	04-Feb-2023 00:00	04-Feb-2023 00:00	04-Feb-2023 00:00	04-Feb-2023 00:00
Compound	CAS Number	LOR	Unit	ES2304523-029	ES2304523-030	ES2304523-031	ES2304523-032	ES2304523-033
				Result	Result	Result	Result	Result
EP231D: (n:2) Fluorotelomer Sulfor	nic Acids - Continued							
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	2	µg/kg	<2	<2	<2	<2	<2
EP231P: PFAS Sums								
^ Sum of PFAS		1	µg/kg	40	<1	<1	<1	<1
^ Sum of PFHxS and PFOS	355-46-4/1763-23- 1	1	µg/kg	40	<1	<1	<1	<1
EP231S: PFAS Surrogate								
13C4-PFOS		1	%	93.0	100	98.2	105	104
13C8-PFOA		1	%	119	119	113	117	113

# Page : 21 of 30 Work Order : ES2304523 Client : HYDROBIOLOGY PTY LTD Project : B22096



		Sample ID	AB1 Hyrtlii AB1	AB1 Macrobrachium AB1	AB1 Yellowbelly AB1	AB1 Sleepy cod AB1	AB4 Porocheilus AB4
	Sampli	ng date / time	04-Feb-2023 00:00	04-Feb-2023 00:00	04-Feb-2023 00:00	04-Feb-2023 00:00	02-Feb-2023 00:00
CAS Number	LOR	Unit	ES2304523-034	ES2304523-035	ES2304523-036	ES2304523-037	ES2304523-038
			Result	Result	Result	Result	Result
	-		Hyrtlii	Macrobrachium	Yellowbelly	Sleepy cod	Porocheilus
	0.1	g	141	3.4	1150	535	2.4
7440-38-2	0.05	mg/kg	0.07	0.55	0.06	0.06	
7440-39-3	0.1	mg/kg	<0.1	30.4	<0.1	<0.1	
7440-42-8	5	mg/kg	<5	<5	<5	<5	
7440-47-3	0.05	mg/kg	<0.05	0.15	<0.05	<0.05	
7440-50-8	0.1	mg/kg	0.3	23.8	0.3	1.1	
7439-98-7	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
7782-49-2	0.05	mg/kg	0.22	0.22	0.44	0.17	
7440-24-6	0.1	mg/kg	0.8	121	0.5	0.6	
7440-61-1	0.01	mg/kg	<0.01	<0.01	<0.01	<0.01	
7440-62-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
7440-66-6	0.5	mg/kg	12.4	44.5	10.1	7.2	
375-73-5	1	µg/kg	<1	<1	<1	<1	<1
2706-91-4	1	µg/kg	<1	<1	<1	<1	<1
355-46-4	1	µg/kg	<1	<1	<1	<1	<1
375-92-8	1	µg/kg	<1	<1	<1	<1	<1
2795-39-3	1	µg/kg	<1	<1	<1	<1	14
	1	µg/kg	<1	<1	<1	<1	2
1763-23-1	1	µg/kg	<1	<1	<1	<1	16
335-77-3	2	µg/kg	<2	<2	<2	<2	<2
							1
375 00 4	5	ua/ka	<5	<5	<5	<5	<5
							<2
							<1
	 7440-38-2 7440-39-3 7440-42-8 7440-47-3 7440-50-8 7439-98-7 7439-98-7 7439-98-7 7440-61-1 7440-62-2 7440-66-6 375-73-5 2706-91-4 375-73-5 2706-91-4 355-46-4 375-92-8 2795-39-3 1763-23-1 335-77-3	CAS Number         LOR	Sampling date / time           CAS Number         LOR         Unit                0.1         g             0.1         g           7440-38-2         0.05         mg/kg           7440-39-3         0.1         mg/kg           7440-42-8         5         mg/kg           7440-42-8         5         mg/kg           7440-50-8         0.1         mg/kg           7440-62-8         0.1         mg/kg           7440-64-8         0.1         mg/kg           7440-62-8         0.1         mg/kg           7440-64-1         0.05         mg/kg           7440-62-2         0.5         mg/kg           7440-66-6         0.5         mg/kg           7440-66-6         0.5         mg/kg           375-73-5         1         µg/kg           375-73-5         1         µg/kg           375-92-8         1         µg/kg           375-92-8         1         µg/kg           375-92-8         1         µg/kg           1763-23-1         1         µg/kg           335-77-3         <	AB1           Sampling date / time         04-Feb-2023 00:00           CAS Number         LOR         Unit         ES2304523-034           Result         Result            Hyrtlii            0.1         g         141            Hyrtlii          Hyrtlii            0.1         g         141            0.1         g         0.1         g           7440-38-2         0.05         mg/kg         0.07           7440-42-8         5         mg/kg         <-0.1           7440-42-8         5         mg/kg         <-0.5           7440-47-3         0.05         mg/kg         <-0.5           7440-50-8         0.1         mg/kg         <-0.5           7782-49-2         0.05         mg/kg         <-0.5           7440-61-1         0.01         mg/kg         <-0.5           7440-62-2         0.5         mg/kg         <-0.5           7440-66-6         0.5         mg/kg         <1           2706-91-4         1         µg/kg         <1           375-73-5         1         µg/kg         <1 <td>AB1         AB1         AB1           CAS Number         LOR         Unit         64-Feb-2023 00:00         04-Feb-2023 00:00           CAS Number         LOR         Unit         ES2304523-034         ES2304523-035           Result         Result         Result         Result            -         Hyrtlii         Macrobrachium            0.1         g         141         3.4           7440-38-2         0.05         mg/kg         &lt;0.1         30.4           7440-38-2         0.05         mg/kg         &lt;0.5            7440-38-2         0.05         mg/kg         &lt;0.1         30.4           7440-42-8         5         mg/kg         &lt;0.5         0.15           7440-39-3         0.1         mg/kg         &lt;0.3         23.8           7439-98-7         0.05         mg/kg         &lt;0.5         &lt;0.05           7440-42-8         5         mg/kg         &lt;0.3         23.8           7439-98-7         0.05         mg/kg         &lt;0.3         23.8           7440-60-8         0.1         mg/kg         &lt;0.3         21.1           7440-61-1         0.01         mg/kg         <th< td=""><td>AB1         AB1         AB1         AB1         AB1         AB1         AB1           Sampling date / time         04-Feb-2023 00:00         04-Feb-2023 00:00         04-Feb-2023 00:00           CAS Number         LOR         Unit         ES2304523-034         ES2304523-035         ES2304523-036            Hyrtlil         Macrobrachlum         Yellowbelly         Result         Result         Result             Hyrtlil         Macrobrachlum         Yellowbelly         1150             Hyrtlil         Macrobrachlum         Yellowbelly         150             Hyrtlili         Macrobrachlum         Yellowbelly         150             Hyrtlili         Macrobrachlum         Yellowbelly         150            9141         3.4         1150         150         150            mg/kg         0.07         0.55         0.06         101            mg/kg         0.07         0.55         0.51         10.1            mg/kg         0.01         0.01         0.05         10.55         10.55           7440-61.001&lt;</td><td>AB1         AB1         AB1         AB1         AB1         AB1         AB1           Sampling date / time         04-Feb-2023 00:00         04-001         001         001         00:05         00:05         00:05         00:05         00:05         00:05         00:0</td></th<></td>	AB1         AB1         AB1           CAS Number         LOR         Unit         64-Feb-2023 00:00         04-Feb-2023 00:00           CAS Number         LOR         Unit         ES2304523-034         ES2304523-035           Result         Result         Result         Result            -         Hyrtlii         Macrobrachium            0.1         g         141         3.4           7440-38-2         0.05         mg/kg         <0.1         30.4           7440-38-2         0.05         mg/kg         <0.5            7440-38-2         0.05         mg/kg         <0.1         30.4           7440-42-8         5         mg/kg         <0.5         0.15           7440-39-3         0.1         mg/kg         <0.3         23.8           7439-98-7         0.05         mg/kg         <0.5         <0.05           7440-42-8         5         mg/kg         <0.3         23.8           7439-98-7         0.05         mg/kg         <0.3         23.8           7440-60-8         0.1         mg/kg         <0.3         21.1           7440-61-1         0.01         mg/kg <th< td=""><td>AB1         AB1         AB1         AB1         AB1         AB1         AB1           Sampling date / time         04-Feb-2023 00:00         04-Feb-2023 00:00         04-Feb-2023 00:00           CAS Number         LOR         Unit         ES2304523-034         ES2304523-035         ES2304523-036            Hyrtlil         Macrobrachlum         Yellowbelly         Result         Result         Result             Hyrtlil         Macrobrachlum         Yellowbelly         1150             Hyrtlil         Macrobrachlum         Yellowbelly         150             Hyrtlili         Macrobrachlum         Yellowbelly         150             Hyrtlili         Macrobrachlum         Yellowbelly         150            9141         3.4         1150         150         150            mg/kg         0.07         0.55         0.06         101            mg/kg         0.07         0.55         0.51         10.1            mg/kg         0.01         0.01         0.05         10.55         10.55           7440-61.001&lt;</td><td>AB1         AB1         AB1         AB1         AB1         AB1         AB1           Sampling date / time         04-Feb-2023 00:00         04-001         001         001         00:05         00:05         00:05         00:05         00:05         00:05         00:0</td></th<>	AB1         AB1         AB1         AB1         AB1         AB1         AB1           Sampling date / time         04-Feb-2023 00:00         04-Feb-2023 00:00         04-Feb-2023 00:00           CAS Number         LOR         Unit         ES2304523-034         ES2304523-035         ES2304523-036            Hyrtlil         Macrobrachlum         Yellowbelly         Result         Result         Result             Hyrtlil         Macrobrachlum         Yellowbelly         1150             Hyrtlil         Macrobrachlum         Yellowbelly         150             Hyrtlili         Macrobrachlum         Yellowbelly         150             Hyrtlili         Macrobrachlum         Yellowbelly         150            9141         3.4         1150         150         150            mg/kg         0.07         0.55         0.06         101            mg/kg         0.07         0.55         0.51         10.1            mg/kg         0.01         0.01         0.05         10.55         10.55           7440-61.001<	AB1         AB1         AB1         AB1         AB1         AB1         AB1           Sampling date / time         04-Feb-2023 00:00         04-001         001         001         00:05         00:05         00:05         00:05         00:05         00:05         00:0

# Page : 22 of 30 Work Order : ES2304523 Client : HYDROBIOLOGY PTY LTD Project : B22096



Sub-Matrix: BIOTA (Matrix: BIOTA)			Sample ID	AB1 Hyrtlii AB1	AB1 Macrobrachium AB1	AB1 Yellowbelly AB1	AB1 Sleepy cod AB1	AB4 Porocheilus AB4
		Sampli	ng date / time	04-Feb-2023 00:00	04-Feb-2023 00:00	04-Feb-2023 00:00	04-Feb-2023 00:00	02-Feb-2023 00:00
Compound	CAS Number	LOR	Unit	ES2304523-034	ES2304523-035	ES2304523-036	ES2304523-037	ES2304523-038
				Result	Result	Result	Result	Result
EP231B: Perfluoroalkyl Carboxylic A	cids - Continued							
Perfluoroheptanoic acid (PFHpA)	375-85-9	1	µg/kg	<1	<1	<1	<1	<1
Perfluorooctanoic acid (PFOA)	335-67-1	1	µg/kg	<1	<1	<1	<1	<1
Perfluorononanoic acid (PFNA)	375-95-1	1	µg/kg	<1	<1	<1	<1	<1
Perfluorodecanoic acid (PFDA)	335-76-2	1	µg/kg	<1	<1	<1	<1	<1
Perfluoroundecanoic acid (PFUnDA)	2058-94-8	1	µg/kg	<1	<1	<1	<1	<1
Perfluorododecanoic acid (PFDoDA)	307-55-1	2	µg/kg	<2	<2	<2	<2	<2
Perfluorotridecanoic acid (PFTrDA)	72629-94-8	2	µg/kg	<2	<2	<2	<2	<2
Perfluorotetradecanoic acid (PFTeDA)	376-06-7	2	µg/kg	<2	<2	<2	<2	<2
EP231C: Perfluoroalkyl Sulfonamides								
Perfluorooctane sulfonamide (FOSA)	754-91-6	5	µg/kg	<5	<5	<5	<5	<5
N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	5	µg/kg	<5	<5	<5	<5	<5
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	2	µg/kg	<2	<2	<2	<2	<2
N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	2	µg/kg	<2	<2	<2	<2	<2
N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	2	µg/kg	<2	<2	<2	<2	<2
N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	1	µg/kg	<1	<1	<1	<1	<1
N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	1	µg/kg	<1	<1	<1	<1	<1
EP231D: (n:2) Fluorotelomer Sulfonic	c Acids							
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	2	µg/kg	<2	<2	<2	<2	<2
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	2	µg/kg	<2	<2	<2	<2	<2
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	2	µg/kg	<2	<2	<2	<2	<2

Page	: 23 of 30
Work Order	: ES2304523
Client	: HYDROBIOLOGY PTY LTD
Project	: B22096



Sub-Matrix: BIOTA (Matrix: BIOTA)			Sample ID	AB1 Hyrtlii AB1	AB1 Macrobrachium AB1	AB1 Yellowbelly AB1	AB1 Sleepy cod AB1	AB4 Porocheilus AB4
		Sampli	ng date / time	04-Feb-2023 00:00	04-Feb-2023 00:00	04-Feb-2023 00:00	04-Feb-2023 00:00	02-Feb-2023 00:00
Compound	CAS Number	LOR	Unit	ES2304523-034	ES2304523-035	ES2304523-036	ES2304523-037	ES2304523-038
				Result	Result	Result	Result	Result
EP231D: (n:2) Fluorotelomer Sulfor	nic Acids - Continued							
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	2	µg/kg	<2	<2	<2	<2	<2
EP231P: PFAS Sums								
^ Sum of PFAS		1	µg/kg	<1	<1	<1	<1	16
^ Sum of PFHxS and PFOS	355-46-4/1763-23- 1	1	µg/kg	<1	<1	<1	<1	16
EP231S: PFAS Surrogate								
13C4-PFOS		1	%	99.5	106	93.0	100	94.0
13C8-PFOA		1	%	100	98.0	100	102	106

# Page : 24 of 30 Work Order : ES2304523 Client : HYDROBIOLOGY PTY LTD Project : B22096



Sub-Matrix: BIOTA (Matrix: BIOTA)			Sample ID	AB5 Porocheilus AB5	AB1 Porocheilus AB1	AB3 Barramundi Duplicated (1)	AB3 Hardyhead Duplicated (7)	AB9 Hyrtlii Duplicated (13)
		Samplii	ng date / time	02-Feb-2023 00:00	02-Feb-2023 00:00	30-Jan-2023 00:00	31-Jan-2023 00:00	01-Feb-2023 00:00
Compound	CAS Number	LOR	Unit	ES2304523-039	ES2304523-040	ES2304523-047	ES2304523-048	ES2304523-049
				Result	Result	Result	Result	Result
Biota Sample Pre-Preparation								
Ø Sample Description		-		Porocheilus	Porocheilus	Barramundi	Hardyhead	Hyrtlii
Ø Weight of Sample Prepared		0.1	g	39.0	7.7	10600	27.0	15.0
EG094: Metals in Biota by ICPMS								
Ø Arsenic	7440-38-2	0.05	mg/kg	0.06	0.05	0.06	0.24	<0.05
Ø Barium	7440-39-3	0.1	mg/kg	1.2	0.7	<0.1	2.8	0.2
Boron	7440-42-8	5	mg/kg	<5	<5	<5	<5	<5
Ø Chromium	7440-47-3	0.05	mg/kg	1.76	2.44	<0.05	1.44	0.55
Copper	7440-50-8	0.1	mg/kg	1.0	1.2	0.3	0.6	0.4
Ø Molybdenum	7439-98-7	0.05	mg/kg	0.24	0.35	<0.05	0.20	0.07
Ø Selenium	7782-49-2	0.05	mg/kg	0.10	0.16	0.18	0.21	0.13
Strontium	7440-24-6	0.1	mg/kg	55.5	54.3	0.6	61.3	5.9
Uranium	7440-61-1	0.01	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01
Vanadium	7440-62-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Zinc	7440-66-6	0.5	mg/kg	49.2	39.5	5.1	54.3	15.6
EP231A: Perfluoroalkyl Sulfonic Acids								
Perfluorobutane sulfonic acid (PFBS)	375-73-5	1	µg/kg	<1	<1	<1	<1	<1
Perfluoropentane sulfonic acid	2706-91-4	1	µg/kg	<1	<1	<1	<1	<1
(PFPeS)	2700-91-4		P9/19	.1				
Perfluorohexane sulfonic acid	355-46-4	1	μg/kg	<1	<1	<1	<1	<1
(PFHxS)			P3.03					
Perfluoroheptane sulfonic acid	375-92-8	1	µg/kg	<1	<1	<1	<1	<1
(PFHpS)								
Perfluorooctane sulfonic acid (PFOS) - Linear	2795-39-3	1	µg/kg	42	2	<1	<1	<1
Perfluorooctane sulfonic acid (PFOS) - Branched		1	µg/kg	2	<1	<1	<1	<1
Perfluorooctane sulfonic acid	1763-23-1	1	µg/kg	44	2	<1	<1	<1
(PFOS) Perfluorodecane sulfonic acid	335-77-3	2	µg/kg	<2	<2	<2	<2	<2
(PFDS)								
P231B: Perfluoroalkyl Carboxylic Acids								
Perfluorobutanoic acid (PFBA)	375-22-4	5	µg/kg	<5	<5	<5	<5	<5
Perfluoropentanoic acid (PFPeA)	2706-90-3	2	µg/kg	<2	<2	<2	<2	<2
Perfluorohexanoic acid (PFHxA)	307-24-4	1	µg/kg	<1	<1	<1	<1	<1

# Page : 25 of 30 Work Order : ES2304523 Client : HYDROBIOLOGY PTY LTD Project : B22096



Sub-Matrix: BIOTA (Matrix: BIOTA)			Sample ID	AB5 Porocheilus AB5	AB1 Porocheilus AB1	AB3 Barramundi Duplicated (1)	AB3 Hardyhead Duplicated (7)	AB9 Hyrtlii Duplicated (13)
		Sampli	ng date / time	02-Feb-2023 00:00	02-Feb-2023 00:00	30-Jan-2023 00:00	31-Jan-2023 00:00	01-Feb-2023 00:00
Compound	CAS Number	LOR	Unit	ES2304523-039	ES2304523-040	ES2304523-047	ES2304523-048	ES2304523-049
				Result	Result	Result	Result	Result
EP231B: Perfluoroalkyl Carboxylic A	cids - Continued							
Perfluoroheptanoic acid (PFHpA)	375-85-9	1	µg/kg	<1	<1	<1	<1	<1
Perfluorooctanoic acid (PFOA)	335-67-1	1	µg/kg	<1	<1	<1	<1	<1
Perfluorononanoic acid (PFNA)	375-95-1	1	µg/kg	<1	<1	<1	<1	<1
Perfluorodecanoic acid (PFDA)	335-76-2	1	µg/kg	<1	<1	<1	<1	<1
Perfluoroundecanoic acid (PFUnDA)	2058-94-8	1	µg/kg	<1	<1	<1	<1	<1
Perfluorododecanoic acid (PFDoDA)	307-55-1	2	µg/kg	<2	<2	<2	<2	<2
Perfluorotridecanoic acid (PFTrDA)	72629-94-8	2	µg/kg	<2	<2	<2	<2	<2
Perfluorotetradecanoic acid (PFTeDA)	376-06-7	2	µg/kg	<2	<2	<2	<2	<2
EP231C: Perfluoroalkyl Sulfonamides								
Perfluorooctane sulfonamide (FOSA)	754-91-6	5	µg/kg	<5	<5	<5	<5	<5
N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	5	µg/kg	<5	<5	<5	<5	<5
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	2	µg/kg	<2	<2	<2	<2	<2
N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	2	µg/kg	<2	<2	<2	<2	<2
N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	2	µg/kg	<2	<2	<2	<2	<2
N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	1	µg/kg	<1	<1	<1	<1	<1
N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	1	µg/kg	<1	<1	<1	<1	<1
EP231D: (n:2) Fluorotelomer Sulfonio	c Acids							
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	2	µg/kg	<2	<2	<2	<2	<2
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	2	µg/kg	<2	<2	<2	<2	<2
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	2	µg/kg	<2	<2	<2	<2	<2

Page	: 26 of 30
Work Order	: ES2304523
Client	: HYDROBIOLOGY PTY LTD
Project	: B22096



Sub-Matrix: BIOTA (Matrix: BIOTA)			Sample ID	AB5 Porocheilus AB5	AB1 Porocheilus AB1	AB3 Barramundi Duplicated (1)	AB3 Hardyhead Duplicated (7)	AB9 Hyrtlii Duplicated (13)
		Sampli	ng date / time	02-Feb-2023 00:00	02-Feb-2023 00:00	30-Jan-2023 00:00	31-Jan-2023 00:00	01-Feb-2023 00:00
Compound	CAS Number	LOR	Unit	ES2304523-039	ES2304523-040	ES2304523-047	ES2304523-048	ES2304523-049
				Result	Result	Result	Result	Result
EP231D: (n:2) Fluorotelomer Sulfor	nic Acids - Continued							
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	2	µg/kg	<2	<2	<2	<2	<2
EP231P: PFAS Sums								
^ Sum of PFAS		1	µg/kg	44	2	<1	<1	<1
^ Sum of PFHxS and PFOS	355-46-4/1763-23- 1	1	µg/kg	44	2	<1	<1	<1
EP231S: PFAS Surrogate								
13C4-PFOS		1	%	96.5	92.0	93.0	94.5	105
13C8-PFOA		1	%	106	102	102	96.5	104

# Page : 27 of 30 Work Order : ES2304523 Client : HYDROBIOLOGY PTY LTD Project : B22096



		Sample ID	AB1 Yellowbelly Duplicated (36)	AB4 Glassfish AB4	AB2 Barramundi Duplicated (2)	AB2 Redclaw ALS Duplicated (6)	AB8 Yellowbelly Duplicated (20)
	Sampli	ng date / time	04-Feb-2023 00:00	02-Feb-2023 00:00	30-Jan-2023 00:00	30-Jan-2023 00:00	30-Jan-2023 00:00
CAS Number	LOR	Unit	ES2304523-050	ES2304523-051	ES2304523-052	ES2304523-053	ES2304523-054
			Result	Result	Result	Result	Result
	-		Yellowbelly	Glassfish	Barramundi	Redclaw	Yellowbelly
	0.1	g	1150	3.0	11200	10.0	154
7440-38-2	0.05	mg/kg	0.05		0.07	0.27	0.06
7440-39-3	0.1	mg/kg	<0.1		<0.1	2.1	0.2
7440-42-8	5	mg/kg	<5		<5	<5	<5
7440-47-3	0.05	mg/kg	<0.05		<0.05	0.14	<0.05
7440-50-8	0.1	mg/kg	0.3		0.3	7.1	0.4
7439-98-7	0.05	mg/kg	<0.05		<0.05	<0.05	<0.05
7782-49-2	0.05	mg/kg	0.40		0.18	0.08	0.49
7440-24-6	0.1	mg/kg	0.4		0.8	24.5	6.2
7440-61-1	0.01	mg/kg	<0.01		<0.01	<0.01	<0.01
7440-62-2	0.5	mg/kg	<0.5		<0.5	<0.5	<0.5
7440-66-6	0.5	mg/kg	9.3		4.9	16.9	7.5
375-73-5	1	µg/kg	<1	<1	<1	<1	<1
2706-91-4	1	µg/kg	<1	<1	<1	<1	<1
355-46-4	1	µg/kg	<1	<1	<1	<1	<1
375-92-8	1	µg/kg	<1	<1	<1	<1	<1
2795-39-3	1	µg/kg	<1	7	<1	<1	4
	1	µg/kg	<1	3	<1	<1	2
1763-23-1	1	µg/kg	<1	10	<1	<1	6
335-77-3	2	µg/kg	<2	<2	<2	<2	<2
375 22 4	5	ug/kg	<5	<5	<5	<5	<5
							<2
							<1
	 7440-38-2 7440-39-3 7440-42-8 7440-47-3 7440-50-8 7439-98-7 7782-49-2 7440-61-1 7440-62-2 7440-62-2 7440-66-6 375-73-5 2706-91-4 375-92-8 2795-39-3  1763-23-1	CAS Number         LOR	Sampling date / time           CAS Number         LOR         Unit                0.1         g             0.1         g           7440-38-2         0.05         mg/kg           7440-39-3         0.1         mg/kg           7440-39-3         0.1         mg/kg           7440-42-8         5         mg/kg           7440-42-8         5         mg/kg           7440-42-8         0.1         mg/kg           7440-50-8         0.1         mg/kg           7440-62-8         0.1         mg/kg           7440-64-8         0.1         mg/kg           7440-62-2         0.5         mg/kg           7440-62-2         0.5         mg/kg           7440-62-2         0.5         mg/kg           7440-63-1         0.01         mg/kg           7440-64-1         0.1         µg/kg           7440-64-1         0.1         µg/kg           375-73-5         1         µg/kg           375-92-8         1         µg/kg           375-92-8         1         µg/kg           1763-23-1	Sampling date / time         Duplicated (36)           Sampling date / time         04-Feb-2023 00:00           CAS Number         LOR         Unit         Esz304523-050           Result         Result         Result            Yellowbelly         Result            Yellowbelly         Result            0.1         g         1150           7440-38-2         0.05         mg/kg         0.05           7440-39-3         0.1         mg/kg         <0.1           7440-42-8         5         mg/kg         <0.5           7440-47-3         0.05         mg/kg         <0.05           7440-47-3         0.05         mg/kg         <0.05           7440-50-8         0.1         mg/kg         <0.05           7782-49-2         0.05         mg/kg         <0.1           7440-66-6         0.5         mg/kg         <0.1           7440-66-6         0.5         mg/kg         <0.1           7440-66-6         0.5         mg/kg         <1           375-73-5         1         µg/kg         <1           375-92-8         1         µg/kg         <1	Image: Part of the second s	Image: Semple series         Image: S	Image: Second

# Page : 28 of 30 Work Order : ES2304523 Client : HYDROBIOLOGY PTY LTD Project : B22096



Sub-Matrix: BIOTA (Matrix: BIOTA)			Sample ID	AB1 Yellowbelly Duplicated (36)	AB4 Glassfish AB4	AB2 Barramundi Duplicated (2)	AB2 Redclaw ALS Duplicated (6)	AB8 Yellowbelly Duplicated (20)
		Sampli	ng date / time	04-Feb-2023 00:00	02-Feb-2023 00:00	30-Jan-2023 00:00	30-Jan-2023 00:00	30-Jan-2023 00:00
Compound	CAS Number	LOR	Unit	ES2304523-050	ES2304523-051	ES2304523-052	ES2304523-053	ES2304523-054
				Result	Result	Result	Result	Result
EP231B: Perfluoroalkyl Carboxylic A	cids - Continued							
Perfluoroheptanoic acid (PFHpA)	375-85-9	1	µg/kg	<1	<1	<1	<1	<1
Perfluorooctanoic acid (PFOA)	335-67-1	1	µg/kg	<1	<1	<1	<1	<1
Perfluorononanoic acid (PFNA)	375-95-1	1	µg/kg	<1	<1	<1	<1	<1
Perfluorodecanoic acid (PFDA)	335-76-2	1	µg/kg	<1	<1	<1	<1	<1
Perfluoroundecanoic acid (PFUnDA)	2058-94-8	1	µg/kg	<1	<1	<1	<1	<1
Perfluorododecanoic acid (PFDoDA)	307-55-1	2	µg/kg	<2	<2	<2	<2	<2
Perfluorotridecanoic acid (PFTrDA)	72629-94-8	2	µg/kg	<2	<2	<2	<2	<2
Perfluorotetradecanoic acid (PFTeDA)	376-06-7	2	µg/kg	<2	<2	<2	<2	<2
EP231C: Perfluoroalkyl Sulfonamides								1
Perfluorooctane sulfonamide (FOSA)	754-91-6	5	µg/kg	<5	<5	<5	<5	<5
N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	5	µg/kg	<5	<5	<5	<5	<5
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	2	µg/kg	<2	<2	<2	<2	<2
N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	2	µg/kg	<2	<2	<2	<2	<2
N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	2	µg/kg	<2	<2	<2	<2	<2
N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	1	µg/kg	<1	<1	<1	<1	<1
N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	1	µg/kg	<1	<1	<1	<1	<1
EP231D: (n:2) Fluorotelomer Sulfonio	c Acids							
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	2	µg/kg	<2	<2	<2	<2	<2
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	2	µg/kg	<2	<2	<2	<2	<2
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	2	µg/kg	<2	<2	<2	<2	<2

Page	: 29 of 30
Work Order	: ES2304523
Client	: HYDROBIOLOGY PTY LTD
Project	: B22096



Sub-Matrix: BIOTA (Matrix: BIOTA)			Sample ID	AB1 Yellowbelly Duplicated (36)	AB4 Glassfish AB4	AB2 Barramundi Duplicated (2)	AB2 Redclaw ALS Duplicated (6)	AB8 Yellowbelly Duplicated (20)
		Sampli	ng date / time	04-Feb-2023 00:00	02-Feb-2023 00:00	30-Jan-2023 00:00	30-Jan-2023 00:00	30-Jan-2023 00:00
Compound	CAS Number	LOR	Unit	ES2304523-050	ES2304523-051	ES2304523-052	ES2304523-053	ES2304523-054
				Result	Result	Result	Result	Result
EP231D: (n:2) Fluorotelomer Sulfor	nic Acids - Continued							
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	2	µg/kg	<2	<2	<2	<2	<2
EP231P: PFAS Sums								
^ Sum of PFAS		1	µg/kg	<1	10	<1	<1	6
[^] Sum of PFHxS and PFOS	355-46-4/1763-23- 1	1	µg/kg	<1	10	<1	<1	6
EP231S: PFAS Surrogate								
13C4-PFOS		1	%	104	102	108	98.0	104
13C8-PFOA		1	%	102	100	102	99.0	103

Page	: 30 of 30
Work Order	: ES2304523
Client	: HYDROBIOLOGY PTY LTD
Project	: B22096



### Surrogate Control Limits

Sub-Matrix: BIOTA		Recovery Limits (%)			
Compound	CAS Number	Low	High		
EP231S: PFAS Surrogate					
13C4-PFOS		50	130		
13C8-PFOA		50	130		



### **CERTIFICATE OF ANALYSIS**

Work Order	ES2304715	Page	: 1 of 9	
Client	: HYDROBIOLOGY PTY LTD	Laboratory	: Environmental Division S	Sydney
Contact	: JOSH HATTON	Contact	: Customer Services ES	
Address	: 40 TERRIGAL STREET	Address	: 277-289 Woodpark Road	Smithfield NSW Australia 2164
	FIG TREE POCKET 4069			
Telephone		Telephone	: +61-2-8784 8555	
Project	: B22096	Date Samples Received	: 14-Feb-2023 11:00	ANITUR A
Order number	:	Date Analysis Commenced	: 14-Feb-2023	
C-O-C number	:	Issue Date	: 17-Feb-2023 18:11	
Sampler	: JOSH HATTON			Hac-MRA NATA
Site	:			
Quote number	: SY/415/22			Accreditation No. 825
No. of samples received	: 6			Accredited for compliance with
No. of samples analysed	: 6			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Franco Lentini	LCMS Coordinator	Sydney Organics, Smithfield, NSW



#### **General Comments**

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

 $\emptyset$  = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- EP231X Per- and Polyfluoroalkyl Substances (PFAS): Samples received in 20ml or 125ml bottles have been tested in accordance with the QSM5.3 compliant, NATA accredited method. 60mL or 250mL bottles have been tested to the legacy QSM 5.1 aligned, NATA accredited method.
- EP231: Stable isotope enriched internal standards are added to samples prior to extraction. Target compounds have a direct analogous internal standard with the exception of PFPeS, PFHpA, PFDS, PFTrDA and 10:2 FTS. These compounds use an internal standard that is chemically related and has a retention time close to that of the target compound. The DQO for internal standard response is 50-150% of that established at initial calibration. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers. These practices are in line with recommendations in the National Environmental Management Plan for PFAS (Australian HEPA) and also conform to QSM 5.3 (US DoD) requirements.

# Page : 3 of 9 Work Order : ES2304715 Client : HYDROBIOLOGY PTY LTD Project : B22096



Sub-Matrix: WATER (Matrix: WATER)			Sample ID	R1	R2	R3	R4	R5
		Samplii	ng date / time	30-Jan-2023 00:00	31-Jan-2023 00:00	01-Feb-2023 00:00	02-Feb-2023 00:00	03-Feb-2023 00:00
Compound	CAS Number	LOR	Unit	ES2304715-001	ES2304715-002	ES2304715-003	ES2304715-004	ES2304715-005
				Result	Result	Result	Result	Result
EG020T: Total Metals by ICP-MS								
Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Barium	7440-39-3	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Molybdenum	7439-98-7	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Strontium	7440-24-6	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Uranium	7440-61-1	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Boron	7440-42-8	0.05	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05
P231A: Perfluoroalkyl Sulfonic Acids								
Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	µg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.02	µg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.01	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.02	μg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.02	µg/L	<0.02	<0.02	<0.02	<0.02	<0.02
P231B: Perfluoroalkyl Carboxylic Acids	;							
Perfluorobutanoic acid (PFBA)	375-22-4	0.1	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	µg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	μg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	μg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluorooctanoic acid (PFOA)	335-67-1	0.01	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Perfluorononanoic acid (PFNA)	375-95-1	0.02	μg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluorodecanoic acid (PFDA)	335-76-2	0.02	μg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.02	μg/L	<0.02	<0.02	<0.02	<0.02	<0.02

# Page : 4 of 9 Work Order : ES2304715 Client : HYDROBIOLOGY PTY LTD Project : B22096



ub-Matrix: WATER Matrix: WATER)			Sample ID	R1	R2	R3	R4	R5
		Samplii	ng date / time	30-Jan-2023 00:00	31-Jan-2023 00:00	01-Feb-2023 00:00	02-Feb-2023 00:00	03-Feb-2023 00:00
Compound	CAS Number	LOR	Unit	ES2304715-001	ES2304715-002	ES2304715-003	ES2304715-004	ES2304715-005
				Result	Result	Result	Result	Result
EP231B: Perfluoroalkyl Carboxylic	Acids - Continued							
Perfluorododecanoic acid	307-55-1	0.02	µg/L	<0.02	<0.02	<0.02	<0.02	<0.02
(PFDoDA)								
Perfluorotridecanoic acid	72629-94-8	0.02	µg/L	<0.02	<0.02	<0.02	<0.02	<0.02
(PFTrDA)								
Perfluorotetradecanoic acid	376-06-7	0.05	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
(PFTeDA)								
P231C: Perfluoroalkyl Sulfonamid	les							
Perfluorooctane sulfonamide	754-91-6	0.02	µg/L	<0.02	<0.02	<0.02	<0.02	<0.02
(FOSA)								
N-Methyl perfluorooctane	31506-32-8	0.05	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
sulfonamide (MeFOSA)								
N-Ethyl perfluorooctane	4151-50-2	0.05	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
sulfonamide (EtFOSA)								
N-Methyl perfluorooctane	24448-09-7	0.05	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
sulfonamidoethanol (MeFOSE)								
N-Ethyl perfluorooctane	1691-99-2	0.05	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
sulfonamidoethanol (EtFOSE)								
N-Methyl perfluorooctane	2355-31-9	0.02	µg/L	<0.02	<0.02	<0.02	<0.02	<0.02
sulfonamidoacetic acid								
(MeFOSAA)				0.00	0.00	0.00		0.00
N-Ethyl perfluorooctane	2991-50-6	0.02	µg/L	<0.02	<0.02	<0.02	<0.02	<0.02
sulfonamidoacetic acid								
(EtFOSAA)								
EP231D: (n:2) Fluorotelomer Sulfo		0.05		-0.05	10.05	-0.05	10.05	10.05
4:2 Fluorotelomer sulfonic acid	757124-72-4	0.05	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
(4:2 FTS)	07040 07 0	0.05		<0.05	<0.05	<0.05	<0.05	<0.0E
6:2 Fluorotelomer sulfonic acid	27619-97-2	0.05	µg/L	SO.02	<0.05	<0.05	<0.05	<0.05
(6:2 FTS)	20100 24 4	0.05	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.00	µg/∟	-0.00	-0.00	0.00	-0.00	-0.05
10:2 Fluorotelomer sulfonic acid	120226-60-0	0.05	μg/L	<0.05	<0.05	<0.05	<0.05	< 0.05
(10:2 FTS)	120220-00-0	0.00	₩9' <b>-</b>	0.00				
EP231P: PFAS Sums								1
Sum of PFAS		0.01	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Sum of PFHxS and PFOS		0.01	μg/L μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Sum of PERXS and PEOS	355-46-4/1763-23- 1	0.01	µy/L	<b>~0.01</b>	~0.01	<u><u> </u></u>	<b>NU.U I</b>	NU.U1

Page	5 of 9
Work Order	: ES2304715
Client	: HYDROBIOLOGY PTY LTD
Project	: B22096



Sub-Matrix: WATER (Matrix: WATER)			Sample ID	R1	R2	R3	R4	R5
		Samplii	ng date / time	30-Jan-2023 00:00	31-Jan-2023 00:00	01-Feb-2023 00:00	02-Feb-2023 00:00	03-Feb-2023 00:00
Compound	CAS Number	LOR	Unit	ES2304715-001	ES2304715-002	ES2304715-003	ES2304715-004	ES2304715-005
				Result	Result	Result	Result	Result
EP231P: PFAS Sums - Continued								
Sum of PFAS (WA DER List)		0.01	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
EP231S: PFAS Surrogate								
13C4-PFOS		0.02	%	95.6	102	98.8	96.1	100
13C8-PFOA		0.02	%	97.0	102	105	102	100

# Page : 6 of 9 Work Order : ES2304715 Client : HYDROBIOLOGY PTY LTD Project : B22096



Sub-Matrix: WATER (Matrix: WATER)			Sample ID	A1	 	 
		Sampli	ng date / time	03-Feb-2023 00:00	 	 
Compound	CAS Number	LOR	Unit	ES2304715-006	 	 
				Result	 	 
EG020T: Total Metals by ICP-MS						
Arsenic	7440-38-2	0.001	mg/L	<0.001	 	 
Barium	7440-39-3	0.001	mg/L	<0.001	 	 
Chromium	7440-47-3	0.001	mg/L	<0.001	 	 
Copper	7440-50-8	0.001	mg/L	<0.001	 	 
Molybdenum	7439-98-7	0.001	mg/L	<0.001	 	 
Selenium	7782-49-2	0.01	mg/L	<0.01	 	 
Strontium	7440-24-6	0.001	mg/L	<0.001	 	 
Uranium	7440-61-1	0.001	mg/L	<0.001	 	 
Vanadium	7440-62-2	0.01	mg/L	<0.01	 	 
Zinc	7440-66-6	0.005	mg/L	<0.005	 	 
Boron	7440-42-8	0.05	mg/L	<0.05	 	 
EP231A: Perfluoroalkyl Sulfonic Acids						
Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	µg/L	<0.02	 	 
Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.02	µg/L	<0.02	 	 
Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.01	µg/L	<0.01	 	 
Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.02	µg/L	<0.02	 	 
Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	µg/L	<0.01	 	 
Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.02	µg/L	<0.02	 	 
EP231B: Perfluoroalkyl Carboxylic Aci	ds					
Perfluorobutanoic acid (PFBA)	375-22-4	0.1	µg/L	<0.1	 	 
Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	µg/L	<0.02	 	 
Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	µg/L	<0.02	 	 
Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	µg/L	<0.02	 	 
Perfluorooctanoic acid (PFOA)	335-67-1	0.01	µg/L	<0.01	 	 
Perfluorononanoic acid (PFNA)	375-95-1	0.02	µg/L	<0.02	 	 
Perfluorodecanoic acid (PFDA)	335-76-2	0.02	µg/L	<0.02	 	 
Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.02	µg/L	<0.02	 	 

# Page : 7 of 9 Work Order : ES2304715 Client : HYDROBIOLOGY PTY LTD Project : B22096



Sub-Matrix: WATER (Matrix: WATER)			Sample ID	A1	 	 
		Samplii	ng date / time	03-Feb-2023 00:00	 	 
Compound	CAS Number	LOR	Unit	ES2304715-006	 	 
				Result	 	 
EP231B: Perfluoroalkyl Carboxylic	Acids - Continued					
Perfluorododecanoic acid	307-55-1	0.02	µg/L	<0.02	 	 
(PFDoDA)						
Perfluorotridecanoic acid	72629-94-8	0.02	µg/L	<0.02	 	 
(PFTrDA)						
Perfluorotetradecanoic acid	376-06-7	0.05	µg/L	<0.05	 	 
(PFTeDA)						
EP231C: Perfluoroalkyl Sulfonamide	es					 
Perfluorooctane sulfonamide	754-91-6	0.02	µg/L	<0.02	 	 
(FOSA)						
N-Methyl perfluorooctane	31506-32-8	0.05	µg/L	<0.05	 	 
sulfonamide (MeFOSA)						
N-Ethyl perfluorooctane	4151-50-2	0.05	µg/L	<0.05	 	 
sulfonamide (EtFOSA)		0.05		-0.05		
N-Methyl perfluorooctane	24448-09-7	0.05	µg/L	<0.05	 	 
sulfonamidoethanol (MeFOSE)	4004.00.0	0.05		<0.05		
N-Ethyl perfluorooctane	1691-99-2	0.05	µg/L	<0.05	 	 
sulfonamidoethanol (EtFOSE)	2355-31-9	0.02		<0.02	 	 
N-Methyl perfluorooctane sulfonamidoacetic acid	2355-31-9	0.02	µg/L	<0.02	 	 
(MeFOSAA)						
N-Ethyl perfluorooctane	2991-50-6	0.02	μg/L	<0.02	 	 
sulfonamidoacetic acid	2001 00 0		P-3-			
(EtFOSAA)						
EP231D: (n:2) Fluorotelomer Sulfor	nic Acids					
4:2 Fluorotelomer sulfonic acid	757124-72-4	0.05	µg/L	<0.05	 	 
(4:2 FTS)						
6:2 Fluorotelomer sulfonic acid	27619-97-2	0.05	µg/L	<0.05	 	 
(6:2 FTS)						
8:2 Fluorotelomer sulfonic acid	39108-34-4	0.05	µg/L	<0.05	 	 
(8:2 FTS)						
10:2 Fluorotelomer sulfonic acid	120226-60-0	0.05	µg/L	<0.05	 	 
(10:2 FTS)						
EP231P: PFAS Sums						
Sum of PFAS		0.01	µg/L	<0.01	 	 
Sum of PFHxS and PFOS	355-46-4/1763-23-	0.01	µg/L	<0.01	 	 
	1					

Page	: 8 of 9
Work Order	: ES2304715
Client	: HYDROBIOLOGY PTY LTD
Project	: B22096



Sub-Matrix: WATER (Matrix: WATER)	Sample ID		A1	 	 	
	Sampling date / time		03-Feb-2023 00:00	 	 	
Compound	CAS Number	LOR	Unit	ES2304715-006	 	 
				Result	 	 
EP231P: PFAS Sums - Continued						
Sum of PFAS (WA DER List)		0.01	µg/L	<0.01	 	 
EP231S: PFAS Surrogate						
13C4-PFOS		0.02	%	97.8	 	 
13C8-PFOA		0.02	%	103	 	 



# Surrogate Control Limits

Sub-Matrix: WATER	Recovery Limits (%)		
Compound	CAS Number	Low	High
EP231S: PFAS Surrogate			
13C4-PFOS		60	120
13C8-PFOA		60	120



Australian Government

# **Department of Industry, Science and Resources**

# National Measurement Institute



# **REPORT OF ANALYSIS**

				Page: 1 of 13			
				Report No. RN1385971			
Client	: HYDROBIOLOGY	Job No.		: HYDR09/230224			
	27/43 LANG PARADE	Quote No.		: QT-02232			
	MILTON QLD 4064	Order No.		: B22096			
		Date Receiv	ed	: 24-FEB-2023			
Attention	: JOSH HATTON	Sampled By		: CLIENT			
Project Name							
Your Client Se	rvices Manager : Danny Slee	Phone		: 02 9449 0169			
Lab Reg No.	Sample Ref	Sample Description					
N23/003440		BIOTA ES2304523-006AB 31-JA	N-2	023			
N23/003442		BIOTA ES2304523-007 31-JAN-2023					
N23/003443		BIOTA ES2304523-008 31-JAN-	2023	3			
N23/003444		BIOTA ES2304523-009 31-JAN-	2023	3			

Lab Reg No.		N23/003440	N23/003442	N23/003443	N23/003444	
Date Sampled		31-JAN-2023	31-JAN-2023	31-JAN-2023	31-JAN-2023	
Sample Reference						
	Units					Method
Total Recoverable Trace Elen	nents by ICP		•			
Lithium	mg/kg	< 0.2	< 0.2	<0.2	<0.2	NT2_46
Thorium Th	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	NT2_46
Dates	·	-	•			
Date extracted		14-MAR-2023	14-MAR-2023	14-MAR-2023	14-MAR-2023	
Date analysed		15-MAR-2023	15-MAR-2023	15-MAR-2023	15-MAR-2023	

10

Richard Tea, Analyst Inorganics - NSW Accreditation No. 198

17-MAR-2023

						Devent	Page: 2 of 13	
Client	HYDROBIOLOG	v			Job No.		No. RN1385971 9/230224	
onent .	27/43 LANG PA	-			Quote No.			
	MILTON OLD				Order No.			
						ived : 24-FEB	-	
Attention :	JOSH HATTON				Sampled B			
Project Name :						,		
-	vices Manager	: Danny Slee			Phone	: 02 944	9 0169	
Lab Reg No.	Sample Ref			Sample Descript	tion			
N23/003445				· ·	523-011 31-JAN	1-2023		
N23/003446	·				523-013 01-FEB			
N23/003447					523-014 01-FEB			
N23/003448	·		BIOTA ES2304523-014 01-FEB-2023					
	·			2.020200				
Lab Reg No.			N23/003445	N23/003446	N23/003447	N23/003448		
Date Sampled			31-JAN-2023	01-FEB-2023	01-FEB-2023	01-FEB-2023		
Sample Refere	nce						7	

Sample Reference		•	•	•	•					
	Units					Method				
Total Recoverable Trace Elem	Total Recoverable Trace Elements by ICP									
Lithium	mg/kg	< 0.2	<0.2	<0.2	<0.2	NT2_46				
Thorium Th	mg/kg	< 0.01	< 0.01	<0.01	0.022	NT2_46				
Dates										
Date extracted		14-MAR-2023	14-MAR-2023	14-MAR-2023	14-MAR-2023					
Date analysed		15-MAR-2023	15-MAR-2023	15-MAR-2023	15-MAR-2023					

U.U.

Richard Tea, Analyst Inorganics - NSW Accreditation No. 198

17-MAR-2023

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 Web: industry.gov.au/measurement

							Page: 3 of 13	
						Report	No. RN1385971	
Client	: HYDROBIOLOG	θY			Job No.	: HYDRO	9/230224	
	27/43 LANG P	ARADE			Quote No.	: QT-022	32	
	MILTON QLD	4064			Order No.	: B22096	6	
					Date Rece	ived : 24-FEB	-2023	
Attention	: JOSH HATTON	I			Sampled B	y : CLIENT		
Project Name	:							
Your Client Se	rvices Manager	: Danny Sl	ee		Phone	: 02 944	9 0169	
	-							
Lab Reg No.	Sample Re	f		Sample Descrip	tion			
N23/003449				BIOTA ES2304	523-016 01-FEB	-2023		
N23/003450				BIOTA ES2304	523-017 01-FEB	-2023		
N23/003451				BIOTA ES2304	523-018 01-FEB	-2023		
N23/003452		BIOTA ES2304523-019 01-FEB-2023						
Lab Reg No.			N23/003449	N23/003450	N23/003451	N23/003452		
Date Sampled		1	01-FEB-2023	01-FEB-2023	01-FEB-2023	01-FEB-2023		
Sample Refere	nce	1					1	
		Units					Method	

Sample Reference		•	•	•	•	
	Units					Method
Total Recoverable Trace Elemen	its by ICP	_				
Lithium	mg/kg	< 0.2	<0.2	<0.2	<0.2	NT2_46
Thorium Th	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	NT2_46
Dates						
Date extracted		14-MAR-2023	14-MAR-2023	14-MAR-2023	14-MAR-2023	
Date analysed		15-MAR-2023	15-MAR-2023	15-MAR-2023	15-MAR-2023	

6.0

Richard Tea, Analyst Inorganics - NSW Accreditation No. 198

17-MAR-2023

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 Web: industry.gov.au/measurement

						Page: 4 of 13
					Report	No. RN1385971
Client	: HYDROBIOLOGY			Job No.	: HYDR09	9/230224
	27/43 LANG PARAD	DE		Quote No.	: QT-022	32
	MILTON QLD 406	1		Order No.	: B22096	
				Date Rece	vived : 24-FEB-	2023
Attention	: JOSH HATTON			Sampled E	By : CLIENT	
Project Name	:					
Your Client Se	rvices Manager :	Danny Slee		Phone	: 02 9449	9 0169
Lab Reg No.	Sample Ref		Sample Descrip	tion		
N23/003456			BIOTA ES2304	523-025 02-FEB	3-2023	
N23/003457			BIOTA ES2304	523-030 04-FEB	3-2023	
N23/003459			BIOTA ES2304	523-032 04-FEB	3-2023	
N23/003460			BIOTA ES2304	523-033 04-FEB	3-2023	
Lab Reg No.		N23/003456	N23/003457	N23/003459	N23/003460	
Date Sampled		02-FEB-2023	04-FEB-2023	04-FEB-2023	04-FEB-2023	
Sample Refere	nce					

	•	•	•	•	
Units					Method
ts by ICP					
mg/kg	<0.2	<0.2	<0.2	< 0.2	NT2_46
mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	NT2_46
	14-MAR-2023	14-MAR-2023	14-MAR-2023	14-MAR-2023	
	15-MAR-2023	15-MAR-2023	15-MAR-2023	15-MAR-2023	
	ts by ICP mg/kg	ts by ICP mg/kg <0.2 mg/kg <0.01 14-MAR-2023	ts by ICP mg/kg <0.2 <0.2 mg/kg <0.01 <0.01 14-MAR-2023 14-MAR-2023	ts by ICP           mg/kg         <0.2         <0.2         <0.2           mg/kg         <0.01	ts by ICP mg/kg <0.2 <0.2 <0.2 <0.2

6.0

Richard Tea, Analyst Inorganics - NSW Accreditation No. 198

17-MAR-2023

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 Web: industry.gov.au/measurement

			Page: 5 of 13
			Report No. RN138597
Client :	HYDROBIOLOGY	Job No.	: HYDR09/230224
	27/43 LANG PARADE	Quote No.	: QT-02232
	MILTON QLD 4064	Order No.	: B22096
		Date Received	: 24-FEB-2023
Attention :	JOSH HATTON	Sampled By	: CLIENT
Project Name :			
Your Client Serv	ices Manager : Danny Slee	Phone	: 02 9449 0169
Lab Reg No.	Sample Ref	Sample Description	
N23/003464		BIOTA ES2304523-039 02-FEB-202	23
N23/003465	<u>.</u>	BIOTA ES2304523-040 02-FEB-202	23

Lab Reg No.		N23/003464	N23/003465	
Date Sampled		02-FEB-2023	02-FEB-2023	
Sample Reference				
	Units			Method
Total Recoverable Trace	Elements by ICP			
Lithium	mg/kg	< 0.2	<0.2	NT2_46
Thorium Th	mg/kg	< 0.01	<0.01	NT2_46
Dates		<u>.</u>		
Date extracted		14-MAR-2023	14-MAR-2023	
Date analysed		15-MAR-2023	15-MAR-2023	

11

Richard Tea, Analyst Inorganics - NSW Accreditation No. 198

17-MAR-2023

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 Web: industry.gov.au/measurement

			Page: 6 of 13
			Report No. RN138597
Client :	HYDROBIOLOGY	Job No.	: HYDR09/230224
	27/43 LANG PARADE	Quote No.	: QT-02232
	MILTON QLD 4064	Order No.	: B22096
		Date Received	: 24-FEB-2023
Attention :	JOSH HATTON	Sampled By	: CLIENT
Project Name :			
Your Client Serv	vices Manager : Danny Slee	Phone	: 02 9449 0169
Lab Reg No.	Sample Ref	Sample Description	
N23/003436		BIOTA ES2304523-001 30-JAN-20	23
N23/003437		BIOTA ES2304523-002 30-JAN-20	23
N23/003438		BIOTA ES2304523-003 30-JAN-20	23

Lab Reg No.		N23/003436	N23/003437	N23/003438	N23/003439	
Date Sampled		30-JAN-2023	30-JAN-2023	30-JAN-2023	31-JAN-2023	
Sample Reference						
	Units					Method
Total Recoverable Trace	Elements by ICP					
Lithium	mg/kg	<0.2	<0.2	<0.2	<0.2	NT2_46
Thorium Th	mg/kg	< 0.01	0.018	0.022	< 0.01	NT2_46
Dates	·					
Date extracted		14-MAR-2023	14-MAR-2023	14-MAR-2023	14-MAR-2023	
Date analysed		15-MAR-2023	15-MAR-2023	15-MAR-2023	15-MAR-2023	

6.10

Richard Tea, Analyst Inorganics - NSW Accreditation No. 198

17-MAR-2023

Lab Reg No.		N23/003436	N23/003437	N23/003438	N23/003439	
Date Sampled		30-JAN-2023	30-JAN-2023	30-JAN-2023	31-JAN-2023	
Sample Reference						
	Units					Method
Miscellaneous		<u>.</u>	-			
Fluoride - Total	mg/kg	< 0.2	<0.2	<0.2	6.3	VL417

N23/003436

Note: Not NATA Accredited for Fluoride by Method VL417.

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 Web: industry.gov.au/measurement

N23/003437 Note: Not NATA Accredited for Fluoride by Method VL417.

N23/003438

Note: Not NATA Accredited for Fluoride by Method VL417.

N23/003439 Note: Not NATA Accredited for Fluoride by Method VL417.

1 folomo C

Paul Ádorno, Section Manager Inorganics - Vic Accreditation No. 89

17-MAR-2023

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 Web: industry.gov.au/measurement

Page: 7 of 13 Report No. RN1385971

				Page: 8 of 13 Report No. RN138597
Client :	HYDROBIOLOGY	Job I	No	: HYDR09/230224
	27/43 LANG PARADE		e No.	: QT-02232
	MILTON QLD 4064	Orde	r No.	: B22096
		Date	Received	: 24-FEB-2023
Attention :	JOSH HATTON	Sam	oled By	: CLIENT
Project Name :				
Your Client Serv	ices Manager : Danny Slee	Phon	e	: 02 9449 0169
Lab Reg No.	Sample Ref	Sample Description		
N23/003441		BIOTA ES2304523-006A0	31-JAN-	2023
N23/003453		BIOTA ES2304523-020AE	01-FEB-2	2023
N23/003454		BIOTA ES2304523-020AA	01-FEB-2	2023
N23/003455		BIOTA ES2304523-022 02		22

Lab Reg No.		N23/003441	N23/003453	N23/003454	N23/003455	
Date Sampled		31-JAN-2023	01-FEB-2023	01-FEB-2023	02-FEB-2023	
Sample Reference						
	Units					Method
Total Recoverable Trace	Elements by ICP					
Lithium	mg/kg	< 0.2	<0.2	<0.2	< 0.2	NT2_46
Thorium Th	mg/kg	< 0.01	<0.01	< 0.01	< 0.01	NT2_46
Dates						
Date extracted		14-MAR-2023	14-MAR-2023	14-MAR-2023	14-MAR-2023	
Date analysed		15-MAR-2023	15-MAR-2023	15-MAR-2023	15-MAR-2023	

Cur

Richard Tea, Analyst Inorganics - NSW Accreditation No. 198

17-MAR-2023

Lab Reg No.		N23/003441	N23/003453	N23/003454	N23/003455	
Date Sampled		31-JAN-2023	01-FEB-2023	01-FEB-2023	02-FEB-2023	
Sample Reference						
	Units					Method
Miscellaneous						
Fluoride - Total	mg/kg	18	0.25	3.5	<0.2	VL417

N23/003441

Note: Not NATA Accredited for Fluoride by Method VL417.

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 Web: industry.gov.au/measurement

N23/003453

Page: 9 of 13 Report No. RN1385971

Note: Not NATA Accredited for Fluoride by Method VL417.

N23/003454 Note: Not NATA Accredited for Fluoride by Method VL417.

N23/003455 Note: Not NATA Accredited for Fluoride by Method VL417.

1 folomo C

Paul Ádorno, Section Manager Inorganics - Vic Accreditation No. 89

17-MAR-2023

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 Web: industry.gov.au/measurement

				Page: 10 of 13
				Report No. RN138597
Client :	HYDROBIOLOGY	Job No.	:	HYDR09/230224
	27/43 LANG PARADE	Quote No.	:	QT-02232
	MILTON QLD 4064	Order No.	:	B22096
		Date Received	: 1	24-FEB-2023
Attention :	JOSH HATTON	Sampled By	:	CLIENT
Project Name :				
Your Client Serv	ices Manager : Danny Slee	Phone	:	02 9449 0169
	Sample Ref			
Lab Reg No.	Sample nei	Sample Description		
0		BIOTA ES2304523-031 04-FEB-20	23	
N23/003458	•	• •		
Lab Reg No. N23/003458 N23/003461 N23/003462	· ·	BIOTA ES2304523-031 04-FEB-20	23	

Lab Reg No.		N23/003458	N23/003461	N23/003462	N23/003463	
Date Sampled		04-FEB-2023	04-FEB-2023	04-FEB-2023	04-FEB-2023	
Sample Reference	· ·					
	Units					Method
Total Recoverable Trace	Elements by ICP		<u>.</u>			
Lithium	mg/kg	< 0.2	<0.2	<0.2	< 0.2	NT2_46
Thorium Th	mg/kg	< 0.01	<0.01	< 0.01	< 0.01	NT2_46
Dates						
Date extracted		14-MAR-2023	14-MAR-2023	14-MAR-2023	14-MAR-2023	
Date analysed		15-MAR-2023	15-MAR-2023	15-MAR-2023	15-MAR-2023	

6.10

Richard Tea, Analyst Inorganics - NSW Accreditation No. 198

17-MAR-2023

Lab Reg No.		N23/003458	N23/003461	N23/003462	N23/003463		
Date Sampled		04-FEB-2023	04-FEB-2023	04-FEB-2023	04-FEB-2023		
Sample Reference							
	Units					Method	
Miscellaneous							
Fluoride - Total	mg/kg	< 0.2	<0.2	<0.2	< 0.2	VL417	

N23/003458

Note: Not NATA Accredited for Fluoride by Method VL417.

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 Web: industry.gov.au/measurement

N23/003461 Note: Not NATA Accredited for Fluoride by Method VL417.

N23/003462 Note: Not NATA Accredited for Fluoride by Method VL417.

N23/003463 Note: Not NATA Accredited for Fluoride by Method VL417.

1 formo C

Paul Ádorno, Section Manager Inorganics - Vic Accreditation No. 89

17-MAR-2023

Page: 11 of 13 Report No. RN1385971

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 Web: industry.gov.au/measurement

		Page: 12 of 13				
		Report No. RN1385971				
Client	: HYDROBIOLOGY	Job No. : HYDR09/230224				
	27/43 LANG PARADE	Quote No. : QT-02232				
	MILTON QLD 4064	<b>Order No.</b> : B22096				
		Date Received : 24-FEB-2023				
Attention	: JOSH HATTON	Sampled By : CLIENT				
Project Name	:					
Your Client Services Manager : Danny Slee		<b>Phone</b> : 02 9449 0169				
Lab Reg No.	Sample Ref	Sample Description				
N23/003466		BIOTA ES2304523-048AA 31-JAN-2023				
N23/003475		BIOTA ES2304523-050AC 04-FEB-2023				

Lab Reg No.		N23/003466	N23/003475	
Date Sampled		31-JAN-2023	04-FEB-2023	
Sample Reference				
	Units			Method
Total Recoverable Trace	Elements by ICP			
Lithium	mg/kg	<0.2	<0.2	NT2_46
Thorium Th	mg/kg	< 0.01	0.011	NT2_46
Dates	·			
Date extracted		14-MAR-2023	14-MAR-2023	
Date analysed		15-MAR-2023	15-MAR-2023	

Richard Tea, Analyst Inorganics - NSW Accreditation No. 198

#### 17-MAR-2023

Lab Reg No.		N23/003466	N23/003475		
Date Sampled		31-JAN-2023	04-FEB-2023		
Sample Reference					
	Units				Method
Miscellaneous			-	·	
Fluoride - Total	mg/kg	3.0	<0.2		VL417

N23/003466

Note: Not NATA Accredited for Fluoride by Method VL417.

N23/003475

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 Web: industry.gov.au/measurement

Page: 13 of 13 Report No. RN1385971

Note: Not NATA Accredited for Fluoride by Method VL417.

Paul Adorno, Section Manager Inorganics - Vic Accreditation No. 89

17-MAR-2023



Accredited for compliance with ISO/IEC 17025 - Testing. This report shall not be reproduced except in full. Results relate only to the sample(s) as received and tested.

This Report supersedes reports: RN1385934

Measurement Uncertainty is available upon request. Chemical Accreditation 198: 105 Delhi Road, North Ryde, NSW, 2113

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 Web: industry.gov.au/measurement





27 / 43 Lang Parade Auchenflower 4066 QUEENSLAND

ABN 26 096 574 659



PO Box 2151 Toowong 4066 QUEENSLAND



+61 (0)7 3721 0100 P info@hydrobiology.biz

www.hydrobiology.biz