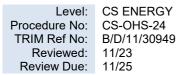
Level: CS ENERGY Procedure No: CS-OHS-24 TRIM Ref No: B/D/11/30949 Review Due: 11/23 Review Due: 11/25

CS ENERGY PROCEDURE

WORKING IN HEAT CS-OHS-24

Responsible Officer: Principal Health and Safety Specialist Responsible Manager: Head of Health Safety and Environment Responsible Executive: Executive General Manager Plant Operations

DOCUMENT HISTORY


Key Changes	Prepared By	Checked By	Approved By	Date
Original Release				07/10/1999
Inclusion of training package reference				17/11/1999
Attachment 1 in 6.1 revised				04/01/2001
Procedure updated by Resile Pty Ltd	Resile Pty Ltd Kogan Heat Management Committee	B Pike D Clarke	T Wiltshire	
Updated to simplify the language	B Pike H Lonsdale	M Kelly D Clarke B McMillan S McKinney	S Faulkner	15/11/2016
Reviewed for currency, no changes required, minor formatting updates	M Paton	L Hartley	B Prain	17/11/2023

Level: CS ENERGY Procedure No: CS-OHS-24 TRIM Ref No: B/D/11/30949 Reviewed: 11/23 Review Due: 11/25

CONTENTS

1	PURF	POSE	3
2	SCOF	۶E	3
3	RESP	ONSIBILITIES AND ACCOUNTABILITIES	3
	3.1	Management	3
	3.2	Employees and Contractors	3
4	WOR	KING IN HEAT	3
	4.1	Introduction	3
	4.2	Controls to minimise the exposure to heat	4
	4.3	Acclimatisation	5
	4.4	Temperature Monitoring	5
	4.5	Effect of heat on the body	5
	4.5.1	Personal Hydration	5
	4.5.2	Medication	6
	4.6	Medical Assessment	
	4.7	Heat Stress	6
	4.8	First Aid response to heat stress	7
	4.8.1	Heat Exhaustion	7
	4.8.2	Heatstroke: a medical emergency	
5	DEFI	NITIONS	8
6	REFE	RENCES	9
7	RECO	ORDS MANAGEMENT	9
8	ΑΤΤΑ	CHMENTS	10
	8.1	Attachment 1 – Heat Management Flow Chart	10
	8.2	Attachment 2 – Basic Heat Stress Assessment Form (Linked Image)	11
	8.3	Attachment 3 – Level 2 Detailed Heat Risk Assessment	12
	8.4	Attachment 4 – Level 3 Physiological Assessment	13
	8.4.1	Recommendations for standardised physiological measures.	
	8.4.2	Hydration Testing	

1 PURPOSE

This procedure is designed to reduce the risk of heat-related disorders by providing guidance to assist in the assessment of heat stress conditions. Heat stress arises from a combination of work activities, environmental factors, health and other factors outside of work.

2 SCOPE

This procedure applies to all CS Energy sites where personnel work in heat. Assessments should be carried out when it is a known hot work environment and individuals are encouraged to perform self assessments of their areas.

3 **RESPONSIBILITIES AND ACCOUNTABILITIES**

3.1 Management

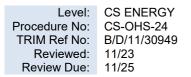
Managers/Supervisors are responsible for ensuring that:

- The requirements of this procedure are enforced within their area of responsibility;
- Regular checks are carried out to confirm compliance;
- Adequate PPE is made available for the task at hand. Obtain professional advice from the Health and Safety team if required;
- Appropriate information, instruction and training are provided to each of their employees;
- Where effective temperature is measured and Thermal Work Limits (TWLs) determined, workers are consulted and effective controls are implemented;
- Adequate drinking water is available.

3.2 Employees and Contractors

Employees and Contractors are responsible for ensuring that they:

- Comply at all times with the requirements specified within this corporate procedure and any relating approved site-specific procedures;
- Conduct a risk assessment, including the identification of suitable controls to prevent injury from working in heat;
- Drink adequate quantities of water throughout the shift and preceding the shift;
- Notify the supervisor if they are taking medication that could affect their ability to work in hot environments;
- Notify their supervisor or work mates if they suffer heat stress symptoms;
- Observe the condition of their work mates for signs of heat stress.


4 WORKING IN HEAT

4.1 Introduction

The effects of heat on the body are influenced by a number of factors including:

Environmental Factors

- Air Temperature
- Air Movement

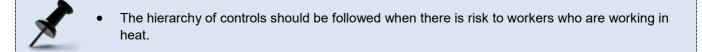
- Humidity
- Radiant Temperature

Personal Factors

- Clothing worn
- Level of activity
- Hydration level
- Acclimatisation
- Medical history
- Physical condition

All tasks shall be assessed to identify possible work practices or environments that have the potential to expose workers to health and safety risks due to excessive exposure to heat for example:

- working in open areas where exposure to sunlight and/or radiation is unavoidable;
- working in enclosed areas;
- working near heat generating/radiating equipment;
- heavy physical work, particularly when wearing impermeable protective clothing e.g. welding coveralls, disposable overalls, respirators, etc.;
- conducting emergency procedures such as fire fighting.


4.2 Controls to minimise the exposure to heat

The extent and application of required controls will depend largely on the outcome of the task risk assessment. The following information is intended to provide general guidelines on control strategies that can be applied, in the order of effectiveness as per the 'hierarchy of controls'.

- **Elimination** removal of the heat source, for example Shutdown heat generating equipment.
- **Substitution** replace process or task with less hazardous one, for example reschedule work to a cooler time of the day.
- **Isolation/Engineering** shield or isolate heat source from personnel, for example
 - o Installing heat shields around hot components
 - Air condition the work environment
- Administration procedural and instructional controls, for example
 - Provide cool drinking water and schedule rest periods at appropriate intervals.
 - Risk assessments/JSEAs to include precautions and controls for prevention of heat stress.
 - o Ensure persons are able to work in the current environment
- **Personal Protective Equipment** contingencies to protect employees, for example:
 - o Wear appropriate protective clothing and equipment.
 - Apply sunscreen and wear a hard hat and brim to protect against sunlight.
 - Provide a shaded area for rest and work breaks.

Level: CS ENERGY Procedure No: CS-OHS-24 TRIM Ref No: B/D/11/30949 Reviewed: 11/23 Review Due: 11/25

4.3 Acclimatisation

Workers in hot environments can become acclimatised as a way of reducing the heat strain. Acclimatisation produces a lower heart rate and higher sweat rate with more diluted sweat.

It is important to note that workers who have been on extended leave, new employees and contract labour from cooler locations will not be acclimatised and this should be taken into consideration when scheduling work in hot environments. Generally new workers in hot environments should become acclimatised in 1 - 2 weeks.

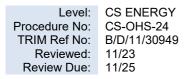
4.4 Temperature Monitoring

The Basic Heat Stress Assessment Form (S2234) can be used to consider both personal and environmental factors when working in heat. A flowchart outlining the heat stress risk assessment process is attached with the Basic Heat Stress Assessment Form at 8.2.

If the Basic Heat Assessment determines work conditions are unacceptable, a detailed heat risk assessment is required. Each work site will have a temperature measuring device (e.g. 3M Questemp-32 Heat Stress Monitor) with the ability to calculate the wet bulb globe temperature (WBGT), dry bulb globe temperature (DBGT), and globe temperature (GT) to determine the thermal work limit (TWL). The WBGT measures the effects of humidity on an individual, the DBGT thermometer measures the ambient air temperature, and the GT is an indication of radiant heat exposure on an individual due to either direct light or hot objects in the environment.

Action may be required depending on the measured TWL – refer to 8.3.

• Please contact the Health and Safety Department for the technical requirements on how to use the temperature measuring devices and measure the TWL.


4.5 Effect of heat on the body

4.5.1 Personal Hydration

All people working in hot conditions shall have ready access to a supply of cool, potable water or other fluid replacement beverage – avoid coffee and tea or other drinks containing caffeine. The supply of cool water, as opposed to iced water will assist in the maintenance of adequate hydration levels.

All workers have a responsibility to be well hydrated. Ideally when working in hot conditions, 1 - 1.5 litres of water should be consumed per hour by drinking small amounts at frequent intervals.

Urine colour charts will give people guidance on personal levels of hydration. Further detailed information on hydration testing is provided at 8.4 – Level 3 Physiological Assessment.

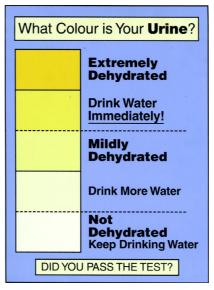


Figure 1 - Urine Colour Chart

4.5.2 Medication

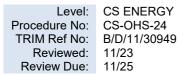
People taking prescription or over-the-counter medications that could affect their ability to work in heat, such as cold/flu medications or drugs containing codeine, antihistamines or pseudoephedrine, or other drugs known to affect working-in-heat (such as anti-depressants) should:

- advise their supervisor, and
- follow the CS Energy Managing Alcohol and Other Drugs Procedure

Refer to <u>CS-OHS-42</u> Managing Alcohol and Other Drugs Procedure.

Similarly, workers taking prescription drugs should advise their physician that they work in hot conditions. The physician should ensure any prescribed drugs or treatment plan is safe in these circumstances and provide a medical clearance before the person resumes work in thermally stressful conditions.

4.6 Medical Assessment


Where considered necessary by the supervisor, workers may be required to undergo medical assessment by a physician who is to advise of the person's suitability for working in heat. The intervention of the physician is to ensure that medical conditions which may otherwise place the person's health at greater risk while working in hot conditions are identified. This is especially important where persons are exhibiting symptoms of colds, flu, diarrhoea or other dehydration-causing illness.

4.7 Heat Stress

All suspected cases of heat stress shall be recorded and properly investigated in line with the CS Energy Incident Management Procedure.

Refer to <u>CS-IM-01</u> Learning from Incidents Procedure.

No person suffering heat stress is to be left alone or to travel by themselves unless they have been assessed as safe to do so by a competent person.

On the first instance of heat stress, the person will be re-educated on the need to come to work fully hydrated and stay hydrated during their shift. Where possible, they may also be required to have a urinary hydration test.

On the second instance of heat stress, the person will have a medical assessment by a physician. The physician may require the person to have a urinary hydration test.

4.8 First Aid response to heat stress

The signs and symptoms of heat stress and treatments options are listed below (source St John's Ambulance).

Seek medical assistance if required.

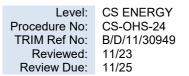
4.8.1 Heat Exhaustion

Signs and Symptoms

- Feeling hot, exhausted, weak and fatigued
- Persistent headache
- Thirst and nausea
- Giddiness and faintness
- Rapid breathing and shortness of breath
- Pale, cool, clammy, skin
- Rapid, weak pulse

4.8.2 Heatstroke: a medical emergency

Signs and Symptoms


- High body temperature at 40°C or more
- Flushed and dry skin
- Pounding rapid pulse
- Headache, nausea and/or vomitting
- Dizziness and visual disturbances
- Irritability and mental confusion which may progress to seizure and unconsciousness

Treatment

- Call ERT using site method of contact
- Move the patient to lie down in a cool place with circulating air
- Loosen tight clothing and/or remove unnecessary garments
- Sponge the patient with cool water
- Give the conscious patient fluids to drink
- Seek medical attention if the patient vomits or does not recover quickly

Treatment

- Call ERT
- Follow DRSABCD
- Apply cold ice packs or wrapped in ice to the patient's neck, groin and armpits
- Cover the patient with a wet sheet
- Ensure an ambulance has been called
- Give water to the patient if they are fully conscious and able to swallow
- Seek urgent medical attention if the patient has a seizure or becomes unconscious

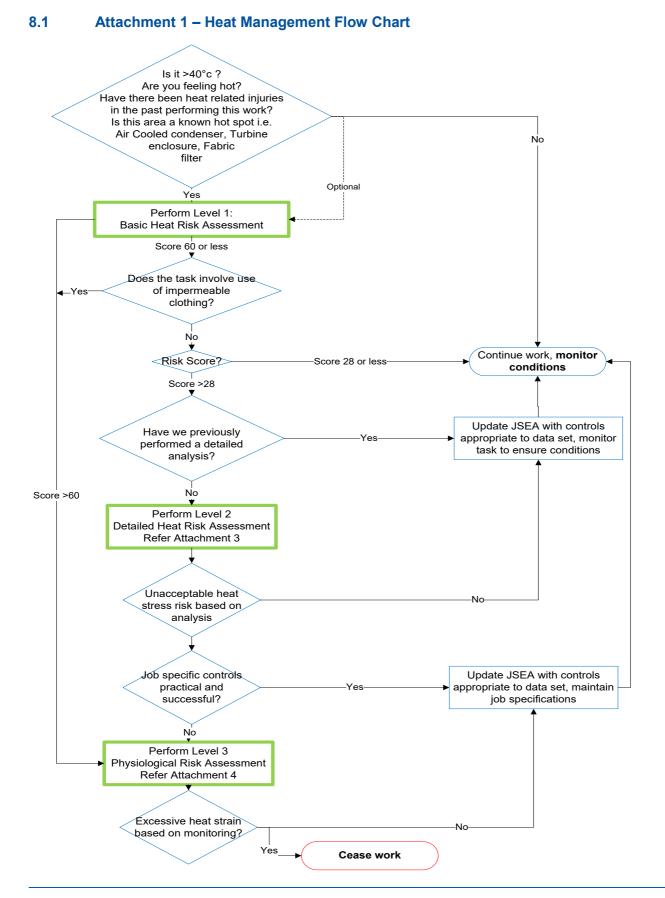
5 **DEFINITIONS**

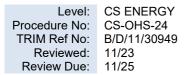
Term	Definition			
Acclimatisation	The gradual physiological adaptation that improves an individual's ability to tolerate heat stress. Acclimatization requires physical activity under heat-stress conditions similar to those anticipated for the work.			
Heat Stress	The net load to which we might be exposed by extreme thermal conditions, physical workload, clothing factors and individual differences.			
Heat Stroke	The effects of heat exhaustion resulting in collapse, loss of consciousness, convulsions or death			
Thermal Work Limit (TWL)	The sustainable metabolic rate that well-hydrated, acclimatised individuals can maintain in a specific thermal environment, within a safe core temperature and sweat rate.			
Dry Bulb Globe Temperature (DBT)	The temperature of air measured by a thermometer freely exposed to the air but shielded from radiation and moisture.			
Wet Bulb Globe Temperature (WBGT)	The temperature a parcel of air would have if it were cooled to saturation by the evaporation of water into it			
Globe Temperature (GT)	The radiant temperature defined as the uniform temperature in which the radiant heat transfer from the human body is equal to the radiant heat transfer in the non uniform enclosure.			
Impermeable Clothing	Impermeable clothing is defined as clothing which prevents the transfer of air or water / water vapour. E.g. Chemical suite, Arc rated switching suit			
Clothing (Permeable)	Clothing (Permeable) is defined as a permeable rating which is an indication of how much air or water / water vapour can pass through it. E.g. • Single layer (light) – up to 150gsm • Single layer (mod) – up to 200gsm • Multiple layer – >200gsm			

6 **REFERENCES**

Reference No	Reference Title	Author
	American Conference of Governmental Industrial Hygienists. (2007) Threshold Limit Values – Heat Stress & Strain	ACGIH
BS EN ISO 9886:2004	Ergonomics – Evaluation of thermal strain by physiological measurements	
	A Guide to Managing Heat Stress: Developed for Use in the Australian Environment. Australian Institute of Occupational Hygienists - 2013	R DeCorleto I Firth J Mate
<u>B/D/15/20302</u>	Form - S2234 - Level 1 - Basic Heat Stress Assessment	CS Energy

7 RECORDS MANAGEMENT


In order to maintain continual improvement, suitability, safety and effectiveness of the organisation, CS Energy's registered documents will be reviewed on a two yearly basis or at intervals specified by legislative or regulatory requirements. Review of controlled documents should occur where it has been identified that there are changes in technology, legislation, standards, regulation or where experience identifies the need for alteration to the content. Registered documents should also be reviewed following an incident, change management process, modification or where directed as part of a risk assessment process.


CS Energy must ensure that records are retained according to accountability, legal, administrative, financial, commercial and operational requirements and expectations. In compliance with records retention and disposal, all documentation created in relation to CS Energy business must be retained in line with minimum retention periods as detailed in legal retention and disposal schedules.

Level: CS ENERGY Procedure No: CS-OHS-24 TRIM Ref No: B/D/11/30949 Reviewed: 11/23 Review Due: 11/25

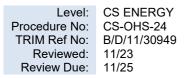
8 ATTACHMENTS

8.2 Attachment 2 – Basic Heat Stress Assessment Form (Linked Image)

LE VEL 1 - BASIC HEAT STRESS ASSESSMENT Form: S2234 Version: 11/16

LEVEL 1 - BASIC HEAT STRESS ASSESSMENT

Mark each box with the assessment point values associated with the conditions Final result = Subtotal A + Subtotal B x Subtotal C.

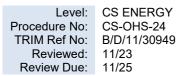

HAZARD TYPE		ASSESSMENT POINT VALUE							
HAZARD I TPE		0		1		2		3	
Sun Exposure		Indoors		Full shade		Part shade		No shade	
Hot Surfaces		Neutral		Warm on contact		Hot on contact		Burn on contact	
Exposure Period		<30 minutes		30 minutes - 1 hour		1 hour - 2 hours		>2 hours	
Confined Space		No						Yes	
Task Complexity				Simple		Moderate		Complex	
Climbing up/down stairs/ladders		None		One level		Two levels		>Two levels	
Distance from Cool Rest Area		<10 metres		10 - 50 metres		50 - 100 metres		>100 metres	
Distan ce from Drinking Water		<10 metres		10 - 30 metres		30 - 50 metres		>50 metres	
Clothing (Permeable)				Single layer (light)		Single layer (mod)		Multiple layer	
Understanding of Heat Strain Risk		Training given						No training given	
Air Movement		Strong wind		Moderate wind		Light wind		No wind	
Respitory Protection (-ve pressure)		None		Disposable half face		Rubber half face		Full face	
Acclimatisation		Acdimatised						Una colimatised	
	0	:Total	0	:Total	0	:Total	0	:Total	
						SUBTOTAL A:	0		
METABOLIC		те			ASSE	SSMENT POINT VALU	JE		
METABOLIC WORK RATE			_						

METABOLIC WORK RATE	ASSESSMENT POINT VALUE			
METADOLIC WORK NATE	2	4	6	
(Refer to Table below)	Light	Moderate	Heavy	
SUBTOTAL B:- 0				

Metabolic Work Rate Class	Examples
Low/ Light Work	Sitting at ease / Light manual work / Hand and arm work / Car driving / Standing / Casual walking / Sitting or standing to control machines
Moderate / Moderate Work	Sustained hand and arm work / Arm and trunk work / Moving light wheelbarrow / Walking around 4.5 m/h
High / Heavy Work	Intense arm and trunk work / Carrying heavy material / Shovelling / Sawing hard wood / Moving heavily loaded wheelbarrows / Carrying loads upstairs

Ī			ASSE SSMENT	POINT VALUE		
	APPARENT TEMPERATURE	1	2	3	4	
l		<27 °C	>27 °C ≥ 33 °C	>33 °C ≥ 41 °C	>41 °C	
	SUBTOTAL C:- 0					
				A+BIXC TOTAL:-	0	

Total Score	Action Required
Less than 28	Work can proceed. NOTE: If there are reports of heat related disorders then the analysis should be reconsidered or proceed to Level 2: Detailed Heat Risk Assessment
More than 28	Control measures must be considered (see CS-OHS-24 - Attachment 3). Level 2 - Detailed Heat Risk Assessment must be undertaken.
More than 60	Immediate action must be undertaken and further controls implemented (see CS-OHS-24 - Attachment 3).


8.3 Attachment 3 – Level 2 Detailed Heat Risk Assessment

TWL and Actions required

TWL calculator can be found at http://www.haad.ae/Safety-in-Heat/Default.aspx?tabid=63

Source: Health Authority - Abu Dhabi (HAAD)

Detailed Risk Assessment Score	TWL	Action Required	
Low	>220	Unrestricted self-paced work Fluid replacement	
Moderate Low	181-220	 Acclimatisation Zone Well hydrated self-paced workers will be able to accommodate to the heat stress by regulating the rate at which they work No unacclimatised worker to work alone Fluid replacement to be adequate 	
Moderate High	141-180	 Acclimatisation Zone No worker to work alone Fluid replacement to be adequate 	
High	116-140	 Buffer Zone The workload exceeds the TWL and even with adequate fluid replacement, heat will limit work time. TWL can be used to predict safe work rest cycling schedules No unacclimatised worker to work No worker to be work alone Air flow should be increased to greater than 0.5m/s Redeploy persons wherever practicable Fluid replacement to be adequate Workers could be tested for hydration Work rest cycling must be applied Work should only continue with authorisation and appropriate management controls. 	
Critical	<116		

8.4 Attachment 4 – Level 3 Physiological Assessment

There are circumstances where control actions (refer Level 2: Detailed Heat Risk Assessment) cannot assure the safety of the exposed work group. There may be situations where only physiological monitoring of the strain imposed on the individuals can be used to ensure that their personal tolerance to that strain is not placed at unacceptable risk. This includes any work undertaken in impermeable clothing.

The important physiological changes that occur during hot conditions and/or high workloads are increases in:

- Core temperature;
- Sweat rate; and
- Heart rate.

8.4.1 Recommendations for standardised physiological measures.

Physiological	Measurements	Information provided	How to measure	Limits	
Parameter				(ISO9886:2004)	
Heart Rate	Peak Heart Rate	Health based limit for	Equivital continuous		
		maximum workload.	reading device or	185 – (0.63 X	
			POLAR heart rate	Age).	
			monitor.		
Heart Rate	Sustained Heart	Health based limit for	Equivital continuous		
	Rate	sustained workload.	reading device or	100	
			POLAR heart rate	180 – Age.	
			monitor.		
Core	Auditory canal	Health based limit to	Temperature		
Temperature	temperature.	indicate mean	Transducer	Increase of 1.0 ^o C	
		temperature of the body	or QuestTEMP II	or maximum of	
		mass.	continuous reading	38 ⁰ C.	
			device.		

 Table 1 - physiological monitoring and assessment

8.4.2 Hydration Testing

Urine Specific Gravity (USG) can be used as a guide in relation to the level of hydration of an individual. Specific Gravity (SG) is defined as the ratio weight of a substance compared to the weight of an equal volume of distilled water; hence the SG of distilled water is 1.000. Generally, for individuals working in ongoing hot conditions the use of USG may be an adequate method to assess hydration status.

	Body Weight Loss (%)	Urine Specific Gravity
Well Hydrated	<1	1.010
Minimal dehydration	1 – 3	1.010 – 1.020
Significant dehydration	3 – 5	1.021 – 1.030
Severe dehydration	>5	>1.030

Table 2 - US National Athletic Trainers Association index of hydration status (adopted from DiColeto, 2013)